

1

4D Record Locking and ORDA Entity Locking

By Erick Lui, Technical Services Engineer, 4D Inc.

Technical Note 18-22

2

Table of Contents

Table of Contents .. 2
Abstract .. 3
Introduction ... 3
Standard 4D Record Locking .. 3

Table Read-Only and Read/Write States ... 3
Read-Only and Read/Write Commands ... 4
Loading and Unloading Records .. 4
Checking for Locked Records and Locked Info .. 6

ORDA Entity Locking .. 8
Stamps .. 8
Scenario 1: Pessimistic locking using entity.lock() and entity.unlock() 9
Scenario 2: Optimistic locking using entity.save() ... 11
Scenario 3: Optimistic locking using entity.save(dk auto merge) ... 13

Conclusion ... 15

3

Abstract

Record locking is an essential feature when handling a database with multiple users. Users can
simultaneously add, modify, or remove records independently, and there must be a safety
mechanism to prevent record conflicts. To prevent corrupted data, there are two types of
locking mechanisms: optimistic and pessimistic locks. Both of these types will have advantages
and disadvantages, but with the option to adhere to standard 4D locks and the newly added
entity locks with ORDA, 4D developers will now have further control and customization on how
to handle multi-user record access.

Introduction

Traditional 4D commands adhere to an automatic pessimistic type locking meaning only one
user or process can modify the currently accessed record. Once the record is loaded, the record
is locked and cannot be modified by another process until it is unloaded. In general, pessimistic
locking may be preferable under the assumption that a record will have a high rate of access
and chance of conflicts. The main issue is that the first user who accesses the record will be the
only one with read/write access while everyone else must wait in the read-only state until the
record is unlocked to modify data.

On the other hand, optimistic locking allows multiple users to modify the same record
simultaneously and only compares the record version upon saving. Typically, this mechanism
can be implemented via record date, timestamp, checksum, or hash. In ORDA’s case, the
entity’s stamp is compared which will be explained in more detail in later sections. Optimistic
locking is often used when records have a low chance of conflict with only a few users. Both
locking types will have their own tradeoffs and it will be up to the developers to consider which
locking type will be best for their app. However, this tech note will primarily emphasize on the
comparison between classic 4D locks and the implementation of ORDA entity locks in 4Dv17.

Standard 4D Record Locking

Table Read-Only and Read/Write States

In 4D, each table per process can only be in one of two states: read-only or read/write
state. The read-only state means that the record can be loaded but existing records cannot
be modified while the read/write state allows the record to be loaded and modified.
However, the read-only state still allows adding or creation of records. It is possible to
change the status of a table between the two states. Switching between states does not
affect the current loaded record as this change will only affect records loaded afterwards.
Otherwise if not specified, 4D will default tables will be in read/write mode. Listed below
are some examples of 4D commands that will alter the state of a table.

4

Read-Only and Read/Write Commands

Sets Table to Read-Only Sets Table to Read-Write
READ ONLY READ WRITE
DISPLAY SELECTION
DISTINCT VALUES
EXPORT DIF
EXPORT SYLK
EXPORT TEXT
PRINT SELECTION
PRINT LABEL
QR REPORT
SELECTION TO ARRAY
SELECTION RANGE TO ARRAY

Loading and Unloading Records

When a record is loaded (E.G. QUERY, NEXT RECORD, PREVIOUS RECORD, etc.), there will be
several different outcomes depending on the table and record state. A useful way to check
the record’s state is using the Locked command which returns true if the record is locked
and false the record is unlocked. The table below shows the possible scenarios.

Table State Record Locked? Load Record Result Locked function output
Read-Only Yes Record loaded as read-only True
Read-Only No Record loaded as read-only True
Read/Write Yes Record loaded as read-only True
Read/Write No Record can be modified False

In short, the only time a record can be modified in standard 4D is when the table is in
read/write state and the current record is not locked. Otherwise, the record will be loaded
as read-only. Here’s a simple example of the loading and unloading process would look like
in code for the [People] table.

// Given that a current selection already exists
READ WRITE([People])
MODIFY RECORD([People])
UNLOAD RECORD([People])
READ ONLY([People])

First the table is set to read/write mode to allow a user to modify any subsequent loaded
records and locks the record for other users. The MODIFY RECORD command then attempts
to load the current record which displays the default input form if record is not locked or

5

displays a dialog warning if the record is already locked. Once the user is done modifying
the record, the UNLOAD RECORD is called to unlock the record and allow read/write access
for other users. Lastly, the table is then set back to read-only as a safety measure to make
sure the table is not accidentally left in read/write mode. In addition, read-only mode can
be beneficial for efficient memory management and faster table access speed. The
following images further demonstrates this scenario using a listbox with current selection.

Image 1: First record is accessed by Process A

Image 2: Process A has read/write access

6

Image 3: Process B attempts to access same record

Image 4: Pessimistic lock prevents read/write access for Process B

Checking for Locked Records and Locked Info

Sometimes receiving an alert with just the process id is not enough information. If more
information is needed regarding who is using the record, the commands listed below can
provide more context about the process that locked the record.

Commands Description

Locked Checks whether current record is locked

LOCKED BY Returns info about user and process that locked the record

7

Get locked records info Returns info regarding all locked records in a table

The Locked command is useful for checking the locked state of a record and is ideally
used in conditional statements. If the record is locked, a dialog message can be
displayed to notify a user that the record is in use. Otherwise, the else block can be used
for record modifications and record unloading.

If (Locked([Table_1]))
 // display info regarding who locked the record
Else
 // do record modifications here
End if

For the LOCKED BY command, it will take the table name as input and output the
process number, 4D user name, session user, and process name as shown below.

C_LONGINT($processNum_l)
C_TEXT($userName_t;$sessionName_t;$processName_t)

// Returns locked info into 4 variables above regarding current record from
Table_1
LOCKED BY([Table_1];$processNum_l;$userName_t;$sessionName_t;$processName_t)

If more information regarding all records for a table is needed, Get locked info would be
preferred as it will return an object containing an array of all locked records and the
processes that are currently accessing these records.

C_OBJECT($lockedInfo_ob)

$lockedInfo_ob:=Get locked records info([Table_1])

// $lockedInfo_ob result with 1 locked record

{
 “records”: [
 {
 “contextID”: “6B668E5AB33A47889AC72A0E5C86AAFC”,
 “contextAttributes”: {
 “task_id”: 5,
 “user_name”: “Erick Lui”,
 “user4d_id”: 1,
 “host_name”: “Erick’s MacBook Pro”,
 “task_name”: “P_17”,
 “client_version”: -268364032
 },
 “recordNumber”: 0
 }
]
}

8

ORDA Entity Locking

Now introduced in v17 is ORDA entity locking which allows both pessimistic and optimistic lock
types. Pessimistic type will lock the record upon access which prevents other users from
modifying the same record at the same time. At most, standard 4D commands allowed multiple
users to read and add records simultaneously. However, ORDA defaults to optimistic locking
which will actually allow modifications by multiple users at the same time and will check
whether an entity’s update was valid upon saving the entity. Both of these locking types will
have tradeoffs as optimistic locking sacrifices guaranteed write operations for multiple
read/write access while pessimistic locking guarantees successful write operations but prevents
multiple simultaneous updates on the same record. This decision will ultimately be up the
developer to carefully consider the number of users and how often a record will be accessed.

Stamps

Stamps are a simple counter attached to each entity to keep track of how many times the
entity has been saved. Upon a successfully saved, the stamp will increment by one. This
stamp is also how ORDA determines whether another process has modified the currently
accessed record before another attempted save. For example, Process A and B both load
the entity at the same time with the entity’s stamp default to 1. Process A makes its
changes and saves, which updates the stamp counter to 2. Process B then makes its changes
and attempts to save but receives an error since the stamp is now 2 when upon loading the
stamp was originally 1. The stamp does not match its initial value upon loading, hence
Process B must reload the entity before making more changes. The diagrams below further
illustrate this sequence. Note that the entity is never locked upon access as ORDA solely
relies on the stamp.

Image 5: Process A and B load the same entity

Image 6: Process A saves the entity first and stamp is automatically incremented

9

Image 7: Process B attempts to save the entity but fails due to stamp change

Scenario 1: Pessimistic locking using entity.lock() and entity.unlock()

Similar to standard 4D locking, ORDA provides the option to manually lock entities using the
commands entity.lock() and entity.unlock(). Typically, these commands are called during the
form events On Load and On Unload, respectively. When attempting to lock or unlock an
entity, these commands will return an object containing the success property boolean and
other properties depending on whether the entity was already locked. An example is
provided below where the entity Form.ent is passed into a form and locked upon the form’s
On Load event.

Case of
 : (Form event=On Load)
 C_OBJECT($status)
 $status:=Form.ent.lock()

 If($status.success)
 // display success status
 Else
 // display error status
 End if

End case

Image 8: Returned object from successful entity.lock()

10

Image 9: Returned object from failed entity.lock()

The returned object from these commands can be extremely useful for checking whether
the entity was successfully locked or displaying possible error messages. For example, ORDA
by default does not prevent multiple users from accessing the same entity even when
locked as only the first user that locked the entity will be allowed to save. This scenario can
be misleading for the subsequent users as there needs to be some indication on the form to
show that the entity is currently locked. The image below shows this scenario.

Image 10: No form indication on which user accessed the entity first

11

Using the properties success and statusText from the returned object, the form can be
further stylized to clearly indicate the entity’s lock status and disable enterable fields when
the entity was locked by another user. In this case, Process A was the first to lock the entity
and Process B attempted to lock the same entity afterwards.

Image 11: Status text displayed for first user that locked the entity

Image 12: Status text displayed, confirm button disabled, and fields set to non-enterable

Scenario 2: Optimistic locking using entity.save()

For this scenario, the commands entity.lock() and entity.unlock() are no longer needed.
Instead, entity.save() is the only command that will be used which simply saves changes
made to the entity. It will also return an object containing the success boolean and other
error properties similar to the entity locking commands shown in images 8 and 9. When two

12

or more processes load the same entity, the only successful save will be from the first
process. Otherwise, all subsequent processes will be unable to save changes to the entity as
the stamp has changed since its loading. To resolve this issue, the entity has to be reloaded
using entity.reload() or the form containing the entity has to be reopened. The images
below provide more context in recreating this scenario.

Image 13: Two processes load the same entity

Image 14: Process A edits age field and saves entity successfully

13

Image 15: Process B edits birthday field but save returns error message

Image 16: Process B reloads entity and loads data from most recent data from Process A

Image 17: Process B now edits birthday field again and saves successfully

Scenario 3: Optimistic locking using entity.save(dk auto merge)

The entity save command includes an additional mode called dk auto merge which
automatically merges any changes made to an entity when loaded by multiple processes.

14

This mode alleviates the problem shown in scenario 2 where Process B had to reload the
entity since Process A saved the entity first. Now using dk auto merge, both processes will
save successfully.

Image 18: Process A successfully saves changes to age field

Image 19: Process B successfully saves changes to birthday field

However, the main caveat with dk auto merge mode is that the merge will fail for the
subsequent process that attempted to save changes that were made on the same field. An
example is provided below where both processes try save changes made to the age field.

15

Image 20: Process B fails automerge due to modifying same field as Process A

To resolve any issue related to failed automerge or stamp change errors, Process B simply
needs to reopen the form containing the entity or reload the entity to get the most updated
data for that specific entity.

Conclusion

This technical note provided the general overview and differences between the two locking
systems provided by classic 4D and ORDA entity locks. Classic 4D uses pessimistic locks where
only one process is granted read/write access while all other processes attempting to load the
same record is granted read-only access. ORDA by default provides optimistic locks where
multiple processes are granted read/write access, but also allows pessimistic locks using
commands like entity.lock() and entity.unlock(). Neither locking type is explicitly better than its
counterpart, and it will be ultimately up to the developers to decide which system is better fit
for their database.

