Generating a Listbox using Dynamic forms
By Vance Villanueva, Technical Services Engineer, 4D Inc.

Technical Note 18-16

Table of Contents

B IE=] o <o) 000 o} =T oY 2
e Yo [T o o 3
L 10T 1LY 3
Conventional form vs Dynamic form designcoer i it ae e ae e iee e eaa s 3
(070 8 12T oYl o = 1Y o o o - I o 1S 3
Setting up the Listbox in the form et e eeaeaaaeeas 3
CUrrent/Name SeleCtioN DASEAuee ettt et e ettt et e e et e e e et e e e e e eae e eaa e naaenns 4

N =1V Y= Y=o 4
Collection/Entity selection basedc.iiiiiiiiiiii e eie e, 4
Programming the ListhoXeoir i ittt ettt e ae e aaeieeeaeeaaaaean 5
Current/Name selection Dasedcoeuiiiiiiiiii et eeenaas 5

N 7= 1V < Y= 11T 5
Collection/Entity selection basediieiiiiii et 5
OPENING the fOrM i ettt et ettt e et ae e aee e aeeeeaaaeanaaes 6
DAY a T T 0T olir=Y o o1 o - L o 6
STV 1=1 1 YT o 6
Form definition with one 0bjeCt......oo oo e et 7
Implementation of the Dynamic ListhoXc.eioe i et ee e ae e eeaaennn 8
I E o o Yo D Ydo I=] 10 YT o T 8

(I ES oo Dol e] 11T ' e 1= i1 V4 e oI 9
Listbox data soUrce CoNfigUIrationsiet ittt ettt ae e aee e eae e eaaeenaaas 9
K11t i o T T o T- 1-7=T o [9
Y 1V o = Y=Y 11

(070 1 =T 1 o 1 7= 1< 1S 12
ENtity Selection based.co i eiaeeeeiaaeaaaas 13
SaMPIE database . ..o e eaeeeeaaaeaaaan 14
Setup Listbox Form definition Method.ccoiiiiiiiii e eee e iaeeeaaaeeas 15
Calling Selection basedccci ittt 17
(07 =0 AN 7= 1V« 7= 17T 17
(071] g = @] | F=Tox d To T T o Y= =T [18
Calling Entity Selection based.oiiiii it e e eaaaan 18
Displaying USINg SUDTOIM ..ot ettt ettt et 18
Displaying JSON definitionet ettt ettt e et e e eae e eaeeeaeeenaaeeannnn 19
(70 Tl 111 e o T 20
2] LT =] 0T 20

Introduction

The ability to create Dynamic forms is a feature that is implemented starting in vI6R6. An
interesting part of this feature is that one can dynamically build each form object definition
with fewer pieces of code and without a form design. For a Listbox, the conventional design
approach is to setup a form as well as set the data source to bind the data in each column
through code or in the Listbox property settings via form editor. But with Dynamic forms, there
is an efficient process which can be built through a JSON definition. By simply creating a JSON
form definition through code or in a JSON file, 4D can easily display it. The power of generating
a fully rich Listbox without the need of designing through a form editor can be very useful as
well as an efficient practice for existing and new databases. This technical note will breakdown
the usage of generating Dynamic forms containing a Listbox as well as demonstrate various
implementations through a sample database.

Overview

As a 4D developer, designing a form that contains data from a database and/or other sources
undergoes a series of steps to display at runtime. A Listbox object for example needs to be
dropped into a form through a form editor. To display contents in a Listbox, the data needs to
be binded in a column through the Listbox property settings or via 4D code. Then finally to
display the form, 4D code is called. This whole process can be minimized through only 4D code
thanks to the feature of Dynamic forms of executing a single JSON definition, which possesses
many benefits. The document will dive into the conventional design to a Dynamic form design
breakdown and will be demonstrated through a sample database.

Note: Database must be in v16R6 or greater to use the new features.

Conventional form vs Dynamic form design

The following section will look at the conventional approach of creating a Listbox to the new
feature of creating it simply by definition in a Dynamic form!

Conventional Approach
Upon displaying a Listbox, it needs to be placed onto a form. Once a Listbox is placed in the

form, it will require setting up the properties in the property list and code to display the
data.

Setting up the Listbox in the form

When setting the Listbox, one must decide what kind of data source type to use. The
standard types are current/named selection or arrays. But in v16R6 and greater, there

3

are other options with collection and entity selection. Depending on the data source
type, one must setup the variables and columns accordingly. The next areas will discuss
the setup on various data source type for the columns:

Current/Name selection based

This type of Listbox requires an “Expression” for each column. An example below
sets up the column to read from “[Table_1]ID":

Property List

4k [(Columni)

lefﬂ}v

5 B]&[=2]n]3]-]

¥ (3 Objects
Object Mame

L 4 ﬁ' Data Source
Choice List

Expression

Array based

Columnl

<Mone>
[Table 1]ID

This type of Listbox requires an “Object/Variable” name for each column. An
example below sets up the column to read in “Column1” array.

Property List

db[Cqumnl (Columnl}

vltﬂ}v

5 [@]&[=2[]3]-]

¥ ()} Objects
Object Name
Variable Name
Variable Type

Columnl
Columnl

String

Collection/Entity selection based

This type of Listbox requires a collection or object variable in the Listbox properties.

If the variable is an object, then using ORDA for Entity selection can be referenced.
The example below uses the “colLB” variable:

Property List [&]

<p [(List Box) v | @

Type List Box -
Object Name List Box |

Collection or entity selection collB

m

Data Source Collection ar entity selection -

To display columns, the key word “This” is used with the property to be accessed in
a collection containing 4D objects or field from an Entity selection referenced into an
object. The example below assigns a column:

Property List [=]
4h[[Cqumn1] - | @
IR =
a Objects -
Object Mame Columnl
4 Data Source
Chaice List <nones - [I]
Expression This.ID
Data Type String - |E

Programming the Listbox

The focus of programming the Listbox is to explain how the data is binded to the Listbox
columns. The areas below will describe how each data source connects to the columns.

Current/Name selection based

Since this is record based, a query is performed to get the selection such as 4D
commands like QUERY and ALL RECORDS.

Array based

Each column can be referenced by the array that is initialized. An example is the
following:

ARRAY TEXT(Columnl;0)

APPEND TO ARRAY(Columnl;"Tom')
APPEND TO ARRAY(Columnl;*Bob™)

Collection/Entity selection based

The example above used “colLB” for collection variable. A collection is used with set
of objects. Here is an example of setting up a collection variable containing objects:

C_COLLECTION(colLB)
colLB:=New collection(New object("'name";"Tom'");New object(*'name";""Bob'™))

For Entity selection based, an object is created from the records that are queried
with ORDA. Here is an example of using “eSel”:

C_OBJECT(eSel)
eSel:=ds.Table_1.allQ

Opening the form

When a Listbox has been setup on the property list and/or through code, the form
would need to be opened for display. Typically, it is opened using Open form window
or Open window.

This gives a general idea of how a Listbox is setup typically through a property list and with
code. The next section will discuss a dynamic approach of building a Listbox purely on code
only.

Dynamic approach

When building a Listbox originally, the property list is set and code is required to bind the
data as well as open the form. To build a Listbox dynamically in a form it does not require
creating a form and placing a Listbox object. To open a form it takes a JSON definition in the
Open form window command.

JSON definition

In v16R6, Dynamic forms can be created with this basic JSON form definition.

{
“pages™: [
null,
{
"objects": {}
T
1
T

The same definition can be created as a 4D object in code as the following:

C_OBJECT($page;$form)

$page:=New object(*'objects';New object)
$form:=New object("'pages';New collection(Null;$page))

Form definition with one object

In taking this a step further, under the “objects” property, a text object is placed in the form
as a simple example.

{
“"pages™: [
null,
{
"objects'": {
YTEXT™: {
"type'': "text",
"text'": ""test",
“"left": 70,
""top": 70,
"width": 100,
“height: 100
s
}
by
1
s

The same definition can be created as a 4D object in code as the following:

C_OBJECT($0bj ; $page;$form)
C_LONGINT($window)

$obj:=new

object(type"; "text";"text"; "test" ;" left";70; " top";70;"width";100; " height';100)
$page:=New object("'objects';New object(""TEXT";%0bj))

$form:=New object("pages';New collection(Null;$page))

$window:=0Open form window($form)
DIALOG($form)
CLOSE WINDOW($window)

When it is displayed, it will be as the following using Open form window by taking an
object as the parameter:

@ [F=5) BoR =)

test

Overall both approaches have their pros and cons to implementation. The focus of this
document is to examine the Dynamic interface aspect as the next section will explain the
implementation in depth.

Implementation of the Dynamic Listbox

From the basic form definition mentioned above it is possible to build a Listbox object definition
very easily with simple properties. These examples are the very minimum requirements to
display a Listbox with data. Other properties can be set to enhance the object. Please refer to
the reference below. This information is a basic example to build upon. It is broken down into
three sections:

e Listbox definition
e Listbox column definition
e Listbox data source configurations

Listbox definition

The Listbox definition in “green” is the minimum configuration in setting up the Listbox.
The next section will describe the column definition in “orange”. For this area, the Listbox
type “listboxType” property needs to be specified to determine the type whether it is
“Selection”, “Array”, “Collection”, or “Entity Selection”. Because this Listbox will be opened
in a Dynamic form, the object’s coordinates and size require a location with “left”, “top”,
“width”, and “height” respectfully as shown below:

{ " " [
pages":
null,

"objects": {
"myListBox": {

"type": "listbox",
"listboxType": "array",
"left": 0,
"top": O,
"width": 361,
"height": 409,

"columns™: [

"objectName": "PDDL",
"width": 3486,
"datasource”: "PDDL",
"header™: {

"text": "PDDL"

Listbox column definition

Once a Listbox type, data source, location, and size are determined, a column “in orange”
can be defined. A column will need a header title, data source, and an object name
property at the minimum as shown above. The example above is for an array based Listbox
where the “objectName” and “dataSource” are specified with the array used. This will be
different on the data source type used.

When selecting the Listbox data source type, the configuration of the Listbox and Listbox
column definition will be different on binding the data. The next section will explain those

types.
Listbox data source configurations
The following data source configurations are covered:

e Selection based

e Array based

e Collection based

e Entity Selection based

Selection based

The following definition is an example of one column that requires a table and field
name:

“pages": [
null,
{
"objects': {
"myListBox": {
“type': "listbox",
"listboxType': "currentSelection™,
“"table™: {
“$ref’: "#/info/table™

}

“"left": O,

"top": O,

"width": 300,

“height: 270,

"columns™: [

{
"objectName': "collD",
"width": 283,
"dataSource": {

}

"$ref'’: "#/info/fFieldl”

’eader": {
"text'": "ID1"
}

}
1.

“"info": {
"table": "Table_1",
"fieldl™: "[Table_1]ID"

The property “info” contains the values for the table and field. A “table” property must
be specified in the Listbox definition using “info”. For each column, a “dataSource”
property is reference by field using “info”. This is like setting the Data Source in the

property list as the following:

Property List =)
A [list oy x| @
|E]&]e]a]=a]-
4 Objects i
Type List Box -
Object Name List Box
Variable or Exp... £
I Data Source Current Selection -

10

Another way to reference the “table” and “dataSource” properties can be naming the
table and field name as shown below:

{
"pages": [
null,
{
"objects'": {
"myListBox": {
“type': "listbox",
"listboxType': "currentSelection™,
“"table": "Table 3",
"left”: O,
"top": O,
"width": 300,
"height": 270,
"columns': [
{
"objectName': "collD",
"width": 283,
“dataSource™: "[Table_1]1D",
“header™: {
"text": "ID1"
}
}
]
}
}
}
1
}
Array based
The following definition is an example of two columns that require two arrays specified:
{
“"pages™: [
null,
{
"objects'": {

"myListBox": {
"type': "listbox",
"listboxType': "array",

“left": O,
"top": O,
"width": 361,

"height": 409,
"columns™: [

{
"objectName": "PDDL",
"width": 173,
"dataSource': "PDDL",
“header™: {

"text': "PDDL"

}

3

{

"objectName': "PDDL1",
11

"width": 173,
""dataSource': "PDDL1",
"header": {

“text': "PDDL1"™
s

For each column, “objectName” and “dataSource” properties are referenced by the
array created. In this example, the “PDDL” and “PDDL1"” arrays were created of text
type. This is like setting the Data Source in the property list as the following:

Property List =]
«» | (List Bay] v| @~
1) 1 e e
4 Objects o
Type List Box -

Object Mame List Box
Variable or Exp...

m

I Data Source Arrays -

Collection based

The following definition is an example of one column that is a collection:

"pages": [
null,
{
"objects': {

"myListBox": {
“type': "listbox",

"listboxType': *"collection",
""dataSource': "colLB",
“left": O,

"top”: O

“width": 361,
“height: 409,
"columns™: [

{
"objectName': "Name",
"width": 346,
"dataSource': ""This.name'",
"selectedltemsSource™: "collLB",
"header": {
text': “Name™
s
}

12

For a Collection based Listbox, a data source property needs to be specified similar to
the property list below where the “colLB” variable is declared:

Property List (=]
b [(List Box) v @~
(B]e a2
4 Objects &
Type List Box -
Object Mame List Box
Collection or entit... collB =
Data Source Callection or entity selection -

For each column, “objectName”, “dataSource”, and “selectedltemsSource” properties
are referenced with “Name”, “This.name”, and “colLB” respectfully in green as
mentioned above. The Listbox “Expression” for each column would be similar to setting
in the Property List:

Property List [=]
-ll-[[Calumni) v] @
B]
4 Objects &
Object Mame Columnl
4 Data Source
Choice List < none * |
I—
I Expression This.Mame
Data Type String

Entity Selection based

The following definition is an example of one column that is an Entity Selection:

"pages": [
null,
{
"objects': {
"myListBox": {
“type': "listbox",

"listboxType': "collection",
""dataSource': "eSel",
“"left": O,

""top": O,

"width": 361,
“height: 409,
"columns™: [

13

"objectName™: "ID",
"width": 346,
"dataSource': "This.ID",
"header": {

“text'": "ID"
T

For an Entity based Listbox, a data source property needs to be a specified object
variable similar to the property list below where the “eSel” variable is declared:

Property List

4P [(List Boxy

EEEEE

=]

v] G

4 Objects =
Type List Box -
Object Name List Box

Collection or entit... e5el

m

Data Source

Collection or entity selection

For each column, “objectName” and “dataSource” properties are referenced with “ID”,

“This.ID” respectfully. The Listbox “Expression” for each column would be similar to
setting in the Property List:

Property List =]
-ll-[[Cqumnl] v] @
G) P =1
4 Objects -
Object Mame Columnl
4 Data Source
Chaoice List < Nonex - m
I Expression This.ID
Data Type String - |E

With this basic understanding on how to construct a Listbox dynamically with the definitions for
the various types of Listboxes, the next section will demonstrate in a sample database.

Sample database

By simply creating a JSON definition of a Listbox, it is easily viewable with Dynamic forms. This
section will demonstrate an ability to generate a Listbox JSON definition simply by calling a

14

method and then display through a subform. The following screen shot below is a make up of
the demonstration (Demo is found in the menu as File->”Dynamic Listbox Demo”):

(3] Dynamic Listbox Demo = e e
[Selection Based 1 - [Update Listbox definition |
Selection Based 1 D firsthlame lasthame - i
pages"s
1T Dizzy
Description: i e]
Querying a table that display three fields. 2lLisa Sanchez I~
3Bob Jackson ofjeckst
Table: E myListBox": {
i 4 Hillary James "type': "listhox",
i 5|Lucas Jacob "listboxType": "currentSelection”,
B 6|Liam Sanders :ft'an "People’,
ID, firstName, & lastMame 7| William Mackare "tDp”.: 0"
Usage: 8/Benjamin Button "width': 437,
Input: 9 Mason Jar ’:5:5’::"“3€
S1{LONGINT) - Listhox type 10/ L Tai L
$2(POINTER) - Datasource 5 -J°9ab" = y i S
S3(LONGINT) - Number of col 1/Jacol oes OHICCNAIE = 2 L
(Al o e Bati "width" 140.6666666667,
= £ "dataSeurce”: "[PeoplelID”,
13/sally Was “header": {
14|Jenny Roddy "text’s 1D
15Beverley Clarance ; }
16/ Henry Spade i
17|Sam Addys "objectName": "firstName”,

18|Jayden Bass "width"; 140,6666666667,
ayeer "dataSource: "[People]firstName”,
19|John Eves “header” {
"text": "firstName"
i

Sample:
generateListhoxFormISONDef (1;->[People];3)

A popup drop down menu contains a selection of creating different Listbox data source types of
selection, array, collection, and entity selection. When a item is selected, the text box below
the drop down will give a description of a method that will be called to generate the JSON
definition. When the method is called, the middle object which is the subform will output the
JSON form definition with OBJECT SET FORM. The far right text box in the form will display the
equivalent JSON definition. A button above can update the subform for manual manipulation.
The next section will discuss the method that generates the JSON definition behind the scenes.

Setup Listbox Form definition Method

The following method below can generate a Listbox JSON definition of all data source types.
By specifying the Listbox type, data source, and the number of columns, a 4D object is
returned that can be used with commands like OPEN FORM WINDOW and OBJECT SET
FORM to display Dynamic forms. With the use of EXECUTE FORMULA, variables can be
dynamically created to individually create new objects. This method used the base 4D code
structure mentioned in the beginning of the document. From there it is able to generate
the bare minimum JSON definition to display a Listbox dynamically.

// Name: generateListboxFormJSONDef
// Description: Method will create a JSON form definition containing
// a Listbox object specifying the type and data source.

// Input Parameters:
// $1 (LONGINT) - Choice of Listbox type

// 1 - Selection based

// 2 - Array based

// 3 - Collection based

// 4 - Entity Selection based

// $2 (POINTER) - Data source (Table selection, Array,
15

// Collection, or Entity Selection)
// $3 (POINTER) - Number of columns or Array of columns

// Output:

// $0 (OBJECT) - JSON form definition

C_LONGINT($1;$choice)

C_POINTER($2;$dataPtr)

C_POINTER($3;$datacCol)

C_LONGINT($nCol ;$nFields;$tableName;$FieldName;$width;$height;$i)
C_OBJECT(%$0;$page;$form;$obj)

C_OBJECT($colObj)

C_TEXT($colName; $varName)

ARRAY OBJECT($arrCol;0)

IT (Count parameters>1)

$choice:=%$1
$dataPtr:=$2
$dataCol :=$3

Case of
. ($choice=1) // Selection based
ARRAY TEXT($FldTitles;0)
ARRAY LONGINT($FIdNum;0)
GET FIELD TITLES($dataPtr->;$fldTitles;$FldNum)

$nFields:=Size of Array($fldTitles)
$nCol :=$dataCol->

If ($nCol>$nFields)
$nCol :=$nFields
End if

. ($choice=2) // Array based
$nCol:=Size of array($dataPtr->)

: (($choice=3) | ($choice=4)) // Collection or Entity Based Collection
$nCol :=Size of array($dataNames->)
End case

OBJECT GET COORDINATES((OBJECT Get pointer(Object named;*Subform™))->;$left;$top;\
$right;$bottom)

$width:=$right-$left
$height:=$bottom-$top

// Creating the Listbox column definition
For ($i;1;$nCol)

Case of
. ($choice=1)
$colObj:=New object(*'objectName" ;$FldTitles{$i};" "width";\
Round(Num($width/$nCol);0)\;""dataSource";"["+Table name($dataPtr)+\
"1+$FIldTitles{$i};"header; New object(*'text";
$TIdTitles{$i}); "textAlign"; "center")

. ($choice=2)
$varName:=$dataPtr->{$i}

$colObj:=New object("objectName";$varName;""width";Round(Num($width/$nCol);\
0);"dataSource' ;$varName;header';New object("text";$varName);\
"textAlign';""center™)

16

: (($choice=3) | ($choice=4))
$varName:=$dataNames->{$i}

$colObj:=New object('objectName";$varName; " 'width";Round(Num($width/$nCol);0)\

;"'dataSource' ;$varName;"header™ ;New object("text";$varName);\
"textAlign';'"center™)

End case
APPEND TO ARRAY($arrCol ;$colObj)
End for

// Creating the Listbox definition
Case of
: ($choice=1)
$obj:=New object("type";"listbox";"listboxType'" ;" currentSelection™;\
"table";Table name($dataPtr);\
"left;0;"top";0; "width" ;$width+15;"height';$height)

: ($choice=2)
$obj:=New object(type";"listbox™;"listboxType";"array";\
"left";0;"top";0;"width" ;$width+15;"height" ;$height)

: (($choice=3) | ($choice=4))
RESOLVE POINTER($dataPtr ;$colName;$tableName;$FieldName)
$obj:=New object("type";"listbox";"listboxType'";"collection";\
"dataSource';$colName;"left";0;"top";0; "width";$width+15;"height' ;$height)
End case

OB SET ARRAY($obj;'"columns';$arrCol)
$page:=New object("objects™;New object("myListBox";$obj))
$form:=New object(''pages';New collection(Null;$page))

$0:=$form
End if

The next sections will demonstrate the generatelistboxFormJSONDef method for the
different Listbox types.

Calling Selection based

To generate a Selection based Listbox, a queried table can be passed as a pointer with

the number of columns specified as a pointer.

C_LONGINT($nCol)

ALL RECORDS([Peoplel)

$nCol:=3 // 3 Columns

$form:=generateListboxFormJSONDef (1;->[People];->$nCol) // Selection based

Calling Array based

To generate an Array based Listbox, an array (arrUsed) needs to be created for the

arrays that will be displayed in the columns. The example below has two arrays “PDDL”

and “PDDL1” that contains data to display.

17

ARRAY TEXT(arrUsed;0)

APPEND TO ARRAY(arrUsed;"PDDL"™)

APPEND TO ARRAY(arrUsed;'PDDL1"™)

$form:= generatelListboxFormJSONDef (2;->arrUsed) // Array based

Calling Collection based

To generate a Collection based Listbox, a collection is passed as a pointer with a array
containing the appropriate properties using “This” to specify each column to display.
The collection is a collection of objects that contain “fname”, “Iname”, and “age” that
are columns to display.

C_COLLECTION(colPeople)

ARRAY TEXT(colNames;0)

CLEAR VARIABLE(colNames)

APPEND TO ARRAY(colNames;"This.fName')
APPEND TO ARRAY(colNames;"This.IName'™)
APPEND TO ARRAY(colNames;'"'This.age')

colPeople:=New collection(New object(fname'; " Bob" ;" Iname";"Smith";"age";39);New
object(*fname™;"Jim";"Iname™;""Stark";""age";38))
$form:= generateListboxFormJSONDef (3;->colPeople;->colNames) // Collection

Calling Entity Selection based

To generate an Entity Selection based Listbox, an object returned from querying through
ORDA is passed as a pointer with a array containing the appropriate properties using
“This” to specify each column to display similar to the Collection example above.

C_OBJECT(eSel)

ARRAY TEXT(colFieldNames;0)

APPEND TO ARRAY(colFieldNames;"This.ID™)

APPEND TO ARRAY(colFieldNames;"This.firstName)
APPEND TO ARRAY(colFieldNames;"This.lastName')

eSel:=ds.People.all(
$form:= generateListboxFormJSONDef (4;->eSel;->colFieldNames) // Entity Collection

Displaying using Subform

The generatelistboxFormJSONDef returns the JSON definition as an 4D object. OBJECT SET
FORM can simply be called as the following:

OBJECT SET SUBFORM(*;''Subform';$form)

A Listbox can be displayed as the following:

18

o ~weo swe =0

sl |ala|la|la|lalalala
RN AR AT SRR Y e OR o

firsthame
Tom
Lisa
Bob
Hillary
Lucas
Liam
William
Benjamin
Mason
Logan
Jacob
James
Sally
Jenny
Beverley
Heriry
Sam
Jayden
John

lastName
Dizzy
Sanchez
Jackson
James
Jacob
Sanders
Masters
Button
Jar
Tay
Times
Patty
Mae
Roddy
Clarance
Spade
Addys
Bass
Eves

Displaying JSON definition

The JSON definition is simply using the following sample command:

jJsonText:=JSON Stringify($form;*)

It can be displayed as the following:

19

"pages”: [
null,
{
"objects™ {

"myListBox": {

"type": "listbox",

"listboxType™ "currentSelection”,

"table": "People”,

"left™ 0,

"top": 0,

"width": 437,

"height": 432,

"columns™: [

{
"objectName": "ID",
"width™: 140.6666666667,
"dataSource™ "[People]lD",
"header": {
“text™ "ID"

}I

"textAlign”: "center”

"objectName": "firstName”,
"width": 140.6666666667,
"dataSource™

Conclusion

This Technical Note introduced a technique of displaying a Listbox dynamically without the
need to develop in a form editor as well as minimizing excess code. With 4D’s new feature of
Dynamic formes, it is possible to prototype a Listbox very easily through a JSON definition and
update very easily. This technique as an example will be very handy on generating Listbox data
on the fly when a database is in runtime without disturbing normal operations. With the
current features mentioned starting from v16R6, many databases can take advantage of this
technique moving forward in 4D.

Reference

Dynamic Forms - http://doc.4d.com/4Dv17/4D/17/Dynamic-Forms.300-3743749.en.html

20

