

1

Practical Subversion with 4D

By Josh Fletcher, Technical Account Manager, 4D Inc.

Technical Note 12-08

2

Table of Contents
--

Table of Contents ... 2	

Abstract .. 4	

Introduction ... 4	

Revision Control ... 4	

Time Travel ... 5	

Revision Control Concepts and Terminology ... 7	

Repository ... 7	

Working Copy .. 8	

Check Out ... 8	

Update ... 8	

Commit ... 8	

Revert .. 8	

Conflict Resolution .. 9	

Diff(erence) ... 9	

Tagging ... 10	

Branching .. 10	

Merging ... 10	

Subversion (SVN) .. 10	

Why SVN? ... 11	

Well-Established .. 11	

Easy ... 11	

Optimistic ... 11	

TortoiseSVN .. 12	

SVN Software ... 12	

Server .. 13	

Client ... 13	

Getting Started .. 14	

SVN 1.6 vs SVN 1.7 ... 15	

SVN and 4D .. 17	

Stage 1 – Commit the Database ... 17	

Adding Files .. 17	

Benefits .. 18	

Risks .. 19	

Stage 2 – Get the Code Out ... 20	

Benefits .. 20	

Risks .. 20	

Tips ... 22	

Log Data .. 22	

Diff ... 23	

Revert, Revert, Revert! .. 24	

Data File Management ... 25	

Ignore List ... 26	

Differential Storage ... 27	

Tracking Changes .. 27	

3

Export ... 27	

Stage 3 (And Beyond) ... 27	

Method Renames/Deletes .. 28	

Team Development .. 28	

Other Structure Objects .. 28	

CodeExport Component .. 29	

Conclusion .. 29	

Related Resources ... 29	

4

Abstract
--

Revision control is a fundamental part of software development and yet, because of
4D’s propensity to use binary files, it remains an unsolved problem for many 4D
developers.

Subversion (SVN) is a well-established, easy-to-use revision control solution. It is
particularly attractive for 4D use with the addition of the Source Toolkit feature in
4D v13.

This Technical Note briefly covers revision control in general, SVN, and practical tips
for using SVN with 4D. The goal is to make revision control an attractive target for
any 4D developer (not just large teams, even solo developers can reap the
rewards). A component is included (CodeExport.4dbase) that can automatically
export all methods from a 4D database for the purpose of placing those methods
under revision control.

Introduction
--

4D has never made revision control easy. The fully-integrated nature of 4D’s
platform, while extremely efficient for application development, is also somewhat
closed and proprietary. Revision control software tends to cast a wider net to the
point the most implementations are built around the assumption that the files under
revision control are plain text files or maybe images, but not large complex binary
files. To be clear, revision control software generally supports any file type for
archival purposes but 9 times out of 10 the most important features only work on
text files.

4D v13 changes the game with the Source Toolkit feature. From teams to solo
developers, any 4D developer can reap the benefits of adding revision control into
their environment.

Please note: this Technical Note does not intend to teach SVN, in general. Basic
tasks like installing SVN software, creating repositories, checking out, etc. are not
covered here simply because there is a wealth of getting started material already
available on the Internet. Instead this Technical Note offers practical information
about using 4D with SVN. It is not expected that the reader necessarily be familiar
with SVN already, but it is expected that the reader will be willing to install and
configure SVN independent of this Technical Note.

Revision Control
--

What is revision control? There are many ways to answer this question of course,
but at the heart the answer is in the name:

5

• Revision – software naturally moves through time with various finite states.
As changes are made, new revisions are introduced. Take 4D as an
example: 4D v12 or 4D v13 are simply revisions of a master set of source
code.

• Control – the point of revision control is to literally take control of the
evolution of the software.

Revision control software attempts to add structure and automation to
something that is already happening. If you open 4D database and change a
method, you have created a new revision of the database. Can the change be
easily reverted? How can the developer keep track of which version is which?
What if more than one person changes the same method? Which version is
currently deployed to the customer? These are the kinds of questions that, while
answerable without revision control software, become trivial to manage with the
addition of such.

Structure generally comes in the form of revision numbers. SVN assigns a
unique, automatically incremented number to each revision of the project, for
example. Thus determining which version of the software is being developed, or
which versions have been deployed is just a matter of identifying the revision
number.

To some extent, revision control allows a measure of “time travel”. Here is an
example.

Time Travel

Several internal 4D systems are built from a common codebase called
“4DStore”. This is a segment of the SVN revision log for this project:

6

One of these systems currently deployed in the US office is based on revision
221 (based on 4DStore 1.4.744). Of course many changes have been made to
the project since then (new features, refactoring, bug fixes, etc.)

A critical bug was identified in revision 221. It was critical enough that it
warranted a fix and redeployment of that revision and could not wait for the full
testing cycle that would be necessary to deploy the current revision of the
source code. Luckily with revision control software this is trivial to fix. SVN was
used to create a “branch” of the project at revision 221. Here is what the
project looked like after the branch:

7

The branch is just a copy of the original project, but taken at a specific point in
time. The bug fix was made, tested, and deployed against revision 221 instead
of the current version of the project (of course the bug fix was made in the
current version as well).

This type of task is certainly achievable without revision control, but is far more
difficult to manage as the developer would need to be very diligent about
keeping track of different copies of the application and ensuring the change was
made to the correct version(s).

Revision Control Concepts and Terminology

There are 10’s if not 100’s of different revision control solutions available today.
While the implementations vary, they often share the same concepts. Thus it is
useful to have an understanding of these concepts and the terms used to refer
to them. This information can be applied to any revision control system.

Please note this list is not exhaustive. Revision control is an extensive area of
software development. In larger organizations it is even possible to find one or
more engineers devoted only to maintaining the revision control system (these
are sometimes called “integration engineers”). Instead the list presented covers
the basics of revision control and additionally focuses on the concepts that are
important for 4D.

Secondly the terms used to describe these revision control concepts are SVN-
specific. Other revision control solutions may use different terms, but the
concepts are the same. For the purposes of this Technical Note it is better to
stick to SVN-specific terms to avoid confusion.

Repository

If revision control software is thought of in a client-server context, the
repository is the server side of the connection. The repository is the
master copy of the project. The most important thing to understand
about the repository is that the developer never manipulates the
repository assets directly. The files in the repository are protected from
direct access. This is how the “control” in revision control is achieved. In
this sense the repository is an archive.

Naturally the repository also contains the full revision history of the
project. SVN achieves this via differential copies (only the differences are
tracked, not full copies of each revision) so the repository storage is often
quiet efficient.

Note that the client-server model is not the only revision control model
available. There are distributed revision control solutions where there is

8

no single master repository. Nonetheless the repository is still protected
from direct access and thus the “control” is maintained.

Working Copy

The working copy is the client portion of the project, using the preceding
client-server analogy. This is the copy of the project that the developer
directly manipulates. Changes made to the working copy are not
reflected in the repository without specific action. When changes are
ready for inclusion in the repository, they are pushed back to the server
(thus creating a new revision).

Check Out

If the developer cannot directly modify the repository and must therefore
make a copy (working copy), a check out is how this occurs. In other
words the action of checking out creates a working copy.

Also implied here is that the developer must have permission to check out
the project, so an additional measure of control is added via permissions
in any revision control solution.

Update

Revision control often implies multi-user development (though this is not
a requirement for the use of revision control). If more than one user is
capable of updating the repository, the update action is what allows the
other users to get the latest changes.

Note that, like the differential storage of the repository, an update only
processes any assets that have been changed, not the entire project. In
this way the update process is also very efficient.

Commit

When changes made to the working copy need to be reflected in the
repository, it is time to commit those changes. The commit action creates
a new revision of the project in the repository. Additionally the working
copy is considered updated; that is to say there is no need to do an
update immediately after a commit. See “revert” for a better
understanding of why this is important.

Revert

The revert action discards any changes made to the working copy,
returning it to the last known revision from the repository. When a check
out or update is completed, the working copy is considered to be in a

9

known good state; i.e. the working copy reflects exactly some revision in
the repository. As soon as a change is made, the working copy no longer
reflects any known revision (until those changes are committed).

The power of this is that the developer is free to experiment on the
working copy and, if things go horribly wrong, they can simply revert back
to the last known good state.

This is especially useful in a 4D context because once a change is made
there is no way to revert it in many cases. Even with undo, the undo
history is lost as soon as the editor (method or form) window is closed.

Note: Revert is one of the most important actions for a 4D developer to
understand. More on this later but pay special attention to this action.

Conflict Resolution

Since no developer can work on the repository directly and must therefore
work on their own working copy, it is possible for more than one user to
modify the same asset at the same time. Remember that changes in the
working copy are not reflected in the repository unless they are
committed. If two users have the same revision checked out and change
the same asset, when they commit that asset will be in conflict.

Typically in revision control software the first user to commit will not run
into any issue, it is only when the second user commits that the conflict
occurs. Note that this is not always the case, but is true for SVN.

Conflict resolution is simply the task of deciding which change will persist
in the repository. The value of revision control is that it can help
automate conflict resolution. If the conflicting asset is a text file, for
example, the software may present the user with a copy of each file and
highlight the differences. The user can then decide which changes to
keep and which to reject.

Conflict resolution in 4D databases is, unfortunately, more complex.
Since 4D databases are generally made of binary files the revision control
software will not have any meaningful understanding of the differences.
Nonetheless the software will at least be able to detect that a conflict has
occurred and warn the user. More in this later.

Diff(erence)

Diff’ing refers to the ability of revision control software to show the user
the difference between different revisions of an asset in the repository.
Most of the time (in most other programming languages) the source code
is housed in plain text files so any revision control solution is quite good
at diff’ing text files. Some go a step further: SVN for example supports

10

diff’ing Word documents using Word’s built in diff’ing feature. SVN will
obtain a copy of each revision of the file and open it in Word.

As mentioned previously, there are no revision control solutions that can
diff 4D’s binary files. This is one issue this Technical Note attempts to
address by exporting the 4D code to text files as described later.

Tagging

Tagging refers to the act of marking a specific revision as a “milestone”.
I.e. if a specific revision is released to customers, it can be useful to tag
that revision so that it is easier to locate later.

Tagged revisions are not necessary, but they make it easier to identify
milestone revisions.

Branching

An example of branching was already presented in the “Time Travel”
section.

Branching is the act of creating an additional, independent copy of the
project in the repository. The previous example created a branch from a
tagged revision of the project for the purposes of making a single bug fix.

4D’s software line-up is another excellent example of branching. All
current 4D products (including Wakanda) are branches off a common set
of source code in the repository. These branches are maintained
independently for the purpose of managing each unique product (v12,
v13, Wakanda).

The advantage of branching, in addition to the already mentioned benefits
of revision control, is the ability to merge important changes (see next
section).

Merging

Merging refers to the ability of revision control software to make a single
change to multiple copies of the project. For example if a bug is fixed in
the main branch of 4D’s source code, and that code is shared among
different branches, then the fix can be merged into each unique branch.
This is extremely efficient when maintaining multiple copies/versions of
software.

Subversion (SVN)
--

11

Subversion is an open source version control system. Founded in 2000 by
CollabNet, Inc., the Subversion project and software have seen incredible success
over the past decade. Subversion has enjoyed and continues to enjoy widespread
adoption in both the open source arena and the corporate world.

(From http://subversion.apache.org/)

Subversion is a true open source project in the sense that visiting Apache’s SVN
website provides access to download source code, not binary packages. Various
third-parties have implemented solutions based on this source code for both SVN
servers and clients. Said another way, Apache does not provide the server or the
client for SVN, only the source code. Some of the client and server solutions are
discusses in the following sections.

Why SVN?

Here are some of the reasons SVN works well for 4D.

Well-Established

A 2007 report by Forrester Research recognized Subversion as the sole
leader in the Standalone Software Configuration Management (SCM)
category.

SVN was first released in 2000 and to this day it is still under active
development. It supports 4D’s target platforms, Mac OS X and Windows (as
well as *nix platforms).

What this means for 4D developers is that it is easy to get started using SVN
and there is a wealth of resources available when help is needed.

Easy

Above all one of the goals of this Technical Note is for every 4D developer to
seriously consider adding revision control software into their development
environment. Thus an overriding theme is that this be easy to accomplish.

Being a well-established solution with a long history means, for one thing,
that SVN benefits from client and server packages that are easy to install and
easy to use. Make no mistake, revision control is a complex topic, but
getting started with SVN is easy so it is a good place to start.

Additionally, being and open source project, many of the best SVN
distributions are free (or at least offer a free version) even for commercial
use. The cost of entry here is quite low.

Optimistic

12

Keeping with the theme of being easy to use, one advantage that SVN offers
is that its file management mechanisms are completely optimistic. A
contrasting example helps explain this:

Another revision control solution, Perforce, uses pessimistic file locking for
files that are under revision control. Checking files out to the working copy
does not mean they can be edited because all files in the working copy are
read-only. An additional Perforce command must be issued in order to make
a file read/write. Think about what this means for a moment:

• If the 4D structure file is under Perforce’s control, the developer must
issue a command to make it read/write.

• If the methods in the 4D database have been exported to text files (as
with the Source Toolkit feature), the same Perforce command must be
issued from within 4D in order to export a new copy of the file.

Perforce’s pessimistic file locking means that the revision control software
must be integrated into 4D. This is by no means “easy”.

SVN by contrast is completely optimistic. Any file in the working copy can be
modified at any time and SVN keeps track of what has been changed. This
means that SVN requires no integration with the 4D database at all. The
developer is free to continue developing as before and only need concern
themselves with SVN when it comes time to update or commit.

TortoiseSVN

This is a slight digression because TortoiseSVN is a Windows-specific SVN
client but it is nonetheless one of the reasons SVN is so attractive. Put
simply, TortoiseSVN is perhaps the best revision control client there is
(though equivalent clients exist for other revision control solutions like
TortoiseHG for Mercurial). The power of TortoiseSVN is that it integrates
directly with the Windows shell (that is, Windows Explorer). If you know how
to use Windows Explorer, you already know how to use most of TortoiseSVN.

All features are driven through the context menu in Windows Explorer. Want
to check out? Right click on a folder and choose “SVN Checkout…” Need to
update? Right-click on the folder or file and choose “SVN Update…” For
complex tasks like diff’ing, TortoiseSVN includes a built in diff viewer that is
automatically launched when a diff is requested via the shell.

The overall point is that it is not necessary for a new user to learn a new,
separate application to get started with SVN on Windows.

(Mac OS X solutions will be discussed later)

SVN Software

13

To get started using SVN, two pieces of software are needed:

• SVN Server
• SVN Client

This section talks about each piece and what tasks they are used for.

Note: It is not necessary to run the client and server on two different machines, though
this is convenient even if you are solo developer. Imagine being able to work on
the project at the office, commit the changes, head home and simply update
from the repository to get the latest changes. You never need to worry about
whether or not you have the latest version nor which specific machine you’re
developing on.

Server

In a 4D context the SVN server software is really only needed for two tasks:

• Repository management; that is creating, moving, and/or deleting
repositories.

• Permissions; adding and removing user access to repositories.

The investment for the developer is quite small, especially if the SVN server
integrates with a domain login system. Direct SVN server interaction will be
minimal.

At 4D, Inc. we are using VisualSVN server for the following reasons:

• Easy setup via a Windows installer package.
• Authentication via the Windows domain, no need to manually create

users.
• Free version for commercial use.

You are by no means required to use VisualSVN server, this is just one
example of an easy-to-use SVN server package.

Client

The SVN client is used for everything else:

• Check out, update, commit
• Adding, renaming, and deleting files
• Branching, tagging, merging
• Diff’ing
• Auditing (viewing logs, revision graphs, etc.)
• Build automation

14

Note that last point: SVN clients come in both command-line and GUI
variants, with the command-line clients being helpful for script-based build
automation.

As already implied, the only client that really needs to be considered on
Windows is TortoiseSVN and all examples throughout this Technical Note will
use it.

There is, unfortunately, no equivalent client on Mac OS X. SVN clients that
integrate with Finder do exist, but the feature sets are severely limited. Thus
the best Mac OS X SVN clients are standalone GUI applications. In particular
two clients should be considered:

• Cornerstone
• Versions

Note that both of these products are paid software. They do both offer trial
modes to feel free to try them. No satisfactory free SVN clients exist for Mac
unfortunately.

Getting Started

Briefly, here is how to get started with SVN:

• Install the server.
• Create a repository.
• Set permissions for the repository.
• Install the client.
• Check out the repository to create a working copy.

At this point the working copy is probably empty as shown here:

Pay attention to the “.svn” folder. This is where SVN stores the necessary
metadata to keep track of the working copy, for example:

• Where is the repository? (the server address)

15

• Credentials to access the repository.
• Which files have changed?
• What is the correct revision to rollback to in case of a revert?

Want to remove the working copy, but keep the local files? Simply delete the
.svn folder. The .svn folder is really the key that lets the SVN client know what
is going on in the working copy and, without it, the working copy is just a
normal set of files like any other.

Note also that the root folder of the working copy (“Dave” in the above
example) need not have any specific name and can be placed anywhere on the
machine.

Here is a more fleshed out example of a working copy with several projects.
This is a working copy of all of the 4D Webinar materials:

Note in this screenshot that TortoiseSVN applies shell icon overlays to the
folders. The green check mark means no files have been changed in that folder
(including subfolders) and the red exclamation means some files have been
changed.

SVN 1.6 vs SVN 1.7

SVN clients and servers come in two major flavors, supporting either SVN 1.6
or SVN 1.7 (often both). It is important to note that both versions are being
maintained in parallel so it is worth examining the major difference between
the two.

The major difference between 1.6 and 1.7 is the handling of the .svn folder:

16

• In 1.6 every folder in the working copy (that is, every subfolder)
contains a .svn folder. Said another way, every folder in the working
copy is itself another working copy.

• In 1.7 the working copy has only a single .svn folder at the root.

For SVN’s developers, this change is largely about technical debt and
performance. The 1.6 metadata implementation is fairly old and difficult to
maintain. The 1.7 implementation is fresher and performs better.

For SVN users this change has important ramifications:

Under SVN 1.6 it is extremely easy to restructure the working copy. For
example imagine a working copy contains several branches of a project, but
the old branches are no longer being maintained:

In 1.6 each folder is itself a working copy. To remove the other branches,
just delete those folders as well as the parent .svn folder. In the above
example the “Main” branch could remain a fully functional working copy with
no further steps but to delete the other folders, including the .svn folder at
the same level.

Under 1.7 the above is not possible. To reduce the working copy to only one
branch the developer would need to delete the current working copy and
check out the desired branch. This can be highly undesirable for one simple
reason: files not under revision control. If the working copy contains files
that are not checked into the repository, for example 4DLINK files (which
have machine-specific paths), the developer needs to manually preserve
those files before deleting the working copy.

On the other hand 1.7 offers a nice advantage. To make a copy of the
project, perhaps to send to someone else, simply copy all of the files except
the .svn folder at the root. Under 1.6 the copy would contain all of the .svn
folders from any subfolders. This is both messy and a potential risk because,
as previously mentioned, the .svn folder contains repository location and
credential information.

In the end the move from 1.6 to 1.7 is a trade-off for the developers of SVN
as well as its users.

17

Note: A clearly defined upgrade path from 1.6 to 1.7 exists so it is not necessary to
re-check-out when switching versions, the 1.6 working copy can be upgraded
to 1.7 (though not the other direction).

SVN and 4D
--

With a working copy in place, it is time to look at using 4D with SVN. This section
is divided into three “stages”, looking at the simplest case, a more advanced usage,
and looking to the future.

Stage 1 – Commit the Database

The simplest way to get started using 4D with SVN is to commit the database to
the repository. After creating the working copy, copy (or move) the 4D
database files and commit them to the repository.

Adding Files

Note there are two ways to add files with most SVN clients:

• There is a specific SVN “add” command. This explicitly adds the file to
the next commit.

• By contrast creating a file in the working copy does not mean it will be
committed to the repository. This can be convenient if, for the
example, the file is something machine-specific and does not belong in
the repository. In fact the SVN add command is not necessary.
Generally new files can be added at commit time as well.

Here is an example of showing a file that has been explicitly added and one
that can be added at commit time:

The TortoiseSVN icons indicate the file state:

• The file “explicitly_added.txt” has a + icon because an SVN add
command was issued for that file.

• The file “ready_to_add.txt” has a ? icon because TortoiseSVN does not
yet know about this file.

Here is the commit dialog for these files:

18

Note the “Status” of “explicitly_added.txt” is “added” and “non-versioned” for
the other file. Note also that there is a check-box next to each file.
Checking the box next to “ready_to_add.txt” will also commit it to the
repository.

Thus when committing a 4D database to an SVN repository it is not
necessary to issue the add command for each individual file. Simply mark
the files to be added at commit time.

Benefits

Even with the simplest step of adding the database to SVN the developer can
reap many rewards:

• Differential Backup – A tremendous advantage to using SVN is that
it performs differential copies of the revisions, not full copies. It is an
extremely efficient way to store multiple copies of the database.

• Revert – as explained previously, once changes are made to a 4D
database there is no way to revert them. In some cases there is an
undo feature, but the undo history is easily lost as well. A database

19

under SVN’s control can easily be reverted to the last known revision
(in fact to any revision) with the SVN revert command.

• Branching and Tagging – the full benefits of branching and tagging
are realized at stage 1. A branching example was already given in the
“Revision Control” section. This powerful feature makes it trivial to
move back and forth through the database’s life and make changes as
needed.

• Auditing (sort of) – looking at the preceding commit dialog
screenshot, note there is an area to add messages with each commit.
In this way the developer is able to start building an audit trail for the
changes that are made to the database. These messages can be
viewed via the SVN commit log. Here is an example log:

Risks

There are some downsides to only checking the database into SVN.

• There is no explicit way to see the difference between revisions of the
database’s binary files (structure, data, resources, etc.).

• While the commit log offers the potential for an audit trail, only diligent
use of the log by the developer will make the feature useful.

20

• Conflict resolution is a manual process. If one user overwrites the
changes of another user, each revision of the database needs to be
checked out and compared manually.

Stage 2 – Get the Code Out

To tap into the real potential of SVN and 4D, content inside the 4D database
needs to be exported into a format that SVN can understand. The Source
Toolkit feature, added in 4D v13, greatly assists this task. The Source Toolkit
provides access to the code of the database, in particular read and write access
to every method; project, form, database, object, and trigger methods can all
be accessed and, therefore, exported.

There are two main commands to consider from the Source Toolkit:

• METHOD GET PATHS – this command provides an array of paths to
methods in the database. Each method in a 4D database is identified by
a unique path. Furthermore, these paths are compliant with the file
system so they can be used to directly export the methods to disk.
o Additionally this command accepts and returns a “stamp” value. Thus

it is possible to get the paths to those methods that have changed
since a particular stamp. This makes the Source Toolkit extremely
efficient as there is no need to dump the entire database with each
export.

• METHOD GET CODE – given a method path, this command returns a
copy of the code in the method. Additionally the method attributes are
also included in this copy; i.e. not only can the code be exported but the
attributes as well.

Benefits

With only these two commands the Source Toolkit exponentially increases
the value of SVN with 4D. By exporting the methods of the database to text
files, and committing them to the repository, a wealth of SVN features is
realized. Now changes to individual methods can be tracked using the built-
in diff tools. If a method is renamed, the newly named method can
automatically be exported. If a Global Find and Replace changes a whole
series of methods, those can be exported as well. A final important benefit
to using the Source Toolkit is this feature represents the future of revision
control with 4D. The time to start using it is now.

The CodeExport component included with this Technical Note represents a
full implementation of this “Stage 2” integration of SVN and 4D. Please refer
to the “CodeExport Component” section for further details.

Risks

21

There are nonetheless some unsolved challenges even here at Stage 2.

• Methods Only – the Source Toolkit only supports the exporting of
methods currently. Other structure objects (forms, lists, users, tables,
etc.) cannot be exported.
o For example there is still the risk that one user might overwrite the

changes of another user to a form. There is no obvious or
automatic way to resolve this except to get a copy of each revision,
open them in 4D, and compare manually.

o By contrast if one user overwrites another user’s changes and the
only thing that was changed was a method, there is no reason to
compare the databases manually. Instead:
§ Get the latest revision of the database.
§ Get the previous revision of the exported method in question.
§ Paste the content of the exported method text file into the

method in the database.
§ Finally commit the change.

• Deletions – if a method is deleted, there is no obvious indication via
the Source Toolkit. Any exported text file version of that method will
become “orphaned”.
o On the other hand, this may not be important. The fact is the

database is still the master copy of the code. The presence of
orphaned text versions of the methods, while perhaps a bit sloppy,
has no effect on the database. Consider:
§ Investigating the difference between two methods means

locating that method file and comparing the revisions. The
presence of other method files is not important.

§ If a new method is created with the same name as a deleted
method, the new version will simply overwrite the old one.

§ If the methods on disk must be cleaned up, simply delete all of
the exported methods and re-export them from the database.
• Note that the method files would need to be explicitly deleted

via SVN (there is a “delete” command), not just via deleting
the files, otherwise the next time an update occurs the
deleted files would just be restored from the repository. In
other words files deleted at the file system level are
considered “missing”, not deleted.

• Rename – the problem with renaming methods is the same as
deletions. The newly named method will be exported of course, but
the old version of the method on disk would remain.

• Technical Debt – 4D v13 is more stringent about method names than
previous versions of 4D. In particular method names need to contain
characters that are legal in the file system in order to be exported. As
such the possibility exists that converted databases contain methods
with invalid names. These methods cannot be exported to disk until
they are fixed.

22

• Conflict Resolution – conflict resolution remains a largely manual
process. SVN tools exist to merge the changes in two different text
files, for example, but remember that in all cases the database is still
the master copy of the source code so even if the conflict in the
exported method text files is resolved, the code would need to be
pasted back into 4D.

Tips

Stage 2 is the focal point of this Technical Note, so here follows some
practical tips for using 4D with SVN.

Log Data

The SVN revision log contains a wealth of information. Already mentioned
was the message feature, but here are some more (as presented in
TortoiseSVN):

23

• The automatically assigned revision numbers are in the left column.
• Additionally the actions for each commit are summarrized via icons.
• The user who commited the changes and the date and time are

available.
• The aformentioned messages are shown in the last column and the

message for the currently highlighted revision is displayed
underneath the list as well.

• Finally the list below the message contains information about each
file that was modified for each and every revision (including new
files, deleted files, and changed files).

Diff

Use the SVN client’s diff tools to track the changes to methods. In
TortoiseSVN this is as simple as double-clicking the method in question
when viewing the revision log, for example:

The method “CE_EXT_LogInsert” was modified in the commit below:

Double-clicking the highlighted line opens TortoiseMerge showing the
difference:

24

The previous revision is on the left and the current one on the right. In
this case the parameter list for the method was altered to accept 8
parameters instead of 5. The lines highlighted in red are considered
removed, and the lines highlighted in yellow are new.

Revert, Revert, Revert!

It has been mentioned a few times that every time a 4D database is
launched, the binary files (structure, data) are changed. SVN will
recognize these files as changed, even if no deliberate changes were
made.

When using 4D with SVN, it is important to get into the habit of reverting
these files if no changes are made. Adopt this pattern:

• Launch the database.
• Quit the database.
• If no changes were made, perform a revert.

To revert using ToroiseSVN just right-click on the database folder and
select SVN -> Revert. A list of changed files is presented, select them all
and confirm the action.

The reason this is important reveals itself when it is time to update. If
someone else has committed the structure file, for example, and the
structure file in the working copy was opened in 4D since the last update,
it will not be possible to complete the latest update. SVN will recognize

25

that the structure file in the working copy has been changed and prevent
it from being overwritten by the copy in the repository.

Note: A quick way to check and see what has been changed is to “soft” commit;
open the commit dialog without accepting the commit and look at the file
list.

Make a habit of reverting when necessary to avoid this issue.

Note: Make note of what your SVN client does when reverting. TortoiseSVN for
example places the reverted files in the Recycle Bin. This can be
convenient if they need to later be retrieved but on the other hand they
do occupy disk space.

Data File Management

Committing changes to the repository involves sending each modified file
to the server. Simply launching a 4D database modifies the data file,
even if no data was changed. Thus every commit involves copying the
entire data file to the server by default, which can take a significant
amount of time with large data files.

Note: The data file is still stored differentially, but the entire file must be copied
to the server so that the server can figure out which parts have changed.

Consider two solutions to avoid this:

• Store the data file in a separate working copy. Only commit this
working copy when absolutely necessary. In this way the commits
for the structure file (and related files) will be much faster. For
example, here is a project that has the source and data file
partitioned in this way:

26

The “Source” folder (which is committed and up to date) contains
all of the database files except the data file. The data file is stored
in the “Data” folder (itself a working copy) and has not been
committed since the changes are not currently important. The
Data working copy can persist in its non-committed state and
therefore not slow down commits for the Source.

• Add the data file to the ignore list. This is especially handy for
development-only/test data files that really have no business being
in the repository. Here is an example of a project where a test
data file is used for development instead of the matching data file:

The minus sign icon indicates that a file is ignored. In this case all
of the “4DIntraTool” files have been ignored because they
represent test-only data. The “real” data file (4DStore2008.4DD) is
rarely accessed and therefore rarely affects the commit speed.

Ignore List

SVN allows the developer to ignore files (either by name, or by
extension). There are definitely certain 4D files that are important to
have in the ignore list:

• Script Files – working with SVN naturally lends itself to
automation via scripting (build automation for example). These
script files tend to be computer specific and, if so, should be placed
on the ignore list. In this way other users do not get files they
cannot use.

27

• 4DLINK Files – 4DLINK files (aka Database Access Files) do not
support relative paths for the Structure and Date file. Thus a
4DLINK file that contains these paths is only useful on that
machine. Consider adding these to the ignore list.
o On the other hand it can be useful to provide a template 4DLINK

file in the repository for other uses to copy as needed. The file
can contain the database credentials, for example, to bypass the
login during development. Other users can make a copy of this
file and add their copy to the ignore list.

• Logs Folder – files in the database “Logs” folder tend to be
machine-specific. Consider ignoring this folder.

• Preferences Folder – as with the Logs folder, the “Preferences”
folder may contain machine-specific files (especially build project
files). Be careful to ignore as appropriate.

Note that adding a file to the ignore list is a change that must be
committed. Said another way, all users benefit from the same ignore list.

Differential Storage

It is worth repeating that SVN offers and extremely efficient, multi-
version backup of the database since it only stores the differences
between different revisions.

Tracking Changes

It is important to understand that SVN is quite good at detecting when a
file is changed. It does not, for example, use the date- nor time-modified
of the file. SVN uses a hashing scheme to track changes. This can be
quite powerful.

The CodeExport component includes a feature to re-export all methods in
the database. This means recreating every method file on disk. But SVN
is smart enough to know whether or not the methods have really been
changed. If no methods have been modified, re-exporting them has no
effect on the working copy.

Export

SVN has a feature to create a copy of a revision, but without the
necessary data to maintain a working copy. This command is called
“export”. This command is useful for creating copies of the project for
deployment, for example. A working copy should never be deployed to a
customer. Instead export the desired revision and deploy that.

Stage 3 (And Beyond)

28

Exporting the database code is not the final step in using 4D with SVN. This
section looks towards future issues that may be tackled.

Method Renames/Deletes

In fact it is possible to handle method renames and deletes as long as they
are treated as the same thing. The Source Toolkit command METHOD GET
PATHS is the key. Renames and deletes can be detected by comparing the
list returned by METHOD GET PATHS and looking for any missing paths.

The complication is what to do when a missing path is detected. Is it a
deleted method or a renamed method? The only way to really know is to ask
the user, but this can be disruptive during development.

A second complication is that in order to delete the method text file from
SVN, a command must be explicitly issued. Deleting the file from disk is not
sufficient. Thus working copy management must be coupled into 4D. This
makes any solution (like the CodeExport component) far more complex.
What if the SVN command fails? What if the server is not reachable?

The CodeExport component does not address this issue for these reasons as
the intention is for the component to have no impact on the developer (or as
little as possible).

Team Development

One of the foundations of revision control software is team development.
Ironically perhaps, this topic has only briefly been mentioned in this Technical
Note. But this is for a good reason. 4D already has a team development
solution: 4D Team Developer.

4D already allows multiple users to work on the same database using 4D
Server and 4D Remote. If team development is necessary, even in an SVN
context, the recommended technique is to use the feature 4D already has.
When the team is done working (e.g. at the end of the work day), commit
the changes to SVN at that time.

By contrast team development in the style of revision control software is very
difficult with 4D. There is no effective way that more than one person can
work on the same structure file at the same time without 4D Team
Developer.

Note that the CodeExport component supports client-server development
(the code runs on the server) so it fits perfectly with 4D Team Developer.

Other Structure Objects

29

Though the Source Toolkit only provides access to methods, it is nonetheless
possible to export other types of 4D objects.

• The database structure can be exported in one of several ways.
o Copying objects in the Structure editor places an XML

representation of the structure in the pasteboard. This can be
exported to a text file.

o The SQL System Tables can be used to generate a text version of
the structure as well.

• Forms can be exported as images via FORM SCREENSHOT command.
While limited in usefulness it does provide a quick way to visually
detect the differences between revisions of a form.
o An additional 4D v13 command, Equal pictures, can be used to

detect if two pictures are different.
• Users and groups can be exported as a BLOB or text via built-in

commands.
• Lists, menus, and other Tool Box items can be exported in the same

way.

So, even without direct support via the Source Toolkit, it is possible to build
an even more robust audit trail of a 4D database.

CodeExport Component
--

The CodeExport component facilitates automatic export of all methods in the host
database to text files on disk. If the host database is under revision control with
SVN, these text files are suitable for committing to the repository, thus giving the
developer to ability to track changes to methods over time.

Documentation for the CodeExport component is provided in a separate file.

Note: CodeExport requires 4D v13.

Conclusion
--

More than anything else the goal of this Technical Note is to convince every single
4D developer to strongly consider trying revision control with 4D. From solo
developers to large teams, the benefits of revision control are immediately
apparent. SVN provides an easy way to get started because it is flexible and
adaptable to 4D. The CodeExport component makes the first step even easier by
automatically exporting all of the database methods. There is nothing to lose, and
so much to gain.

Related Resources
--

30

• VisualSVN Server - http://www.visualsvn.com/server/
• TortoiseSVN - http://tortoisesvn.tigris.org/
• Cornerstone - http://www.zennaware.com/cornerstone/
• Versions - http://versionsapp.com/

