
1

Managing Backup Preferences and Files
By Charles “Charlie” Vass, Technical Services Team Member, 4D Inc.

Technical Note 12-04

2

Table of Contents
--

Abstract .. 3
Introduction ... 3
The Backup Preferences Management Problem ... 3

Building an application ... 3
Here is a typical scenario: ... 3

The 4D Backup Project File .. 4
Three different approaches to Backup.XML management 5

Copy and Restore the Backup.XML File ... 5
Building a Backup.XML File .. 6
Another Concept .. 7
The Backup.XML2 File ... 8

Component and Demo .. 11
The Demo Data Folder ... 12
The Demo Structure folder ... 13
The BKP_Manager Component .. 13

Component Client-Server Interaction .. 14
Component Operational Concept .. 14
BackupXML_Archive ... 15
BackupXML_Restore ... 15
M_CheckBackup ... 15

Advance Settings dialog ... 20
Processing the settings ... 22
Summary ... 23
Conclusion .. 24

3

Abstract
--

When developing a database application for distribution, such as a merged
application without a data file, an added benefit would be to feature custom backup
preferences in the application. The custom backup preferences could accompany
the application at distribution, be configured with initial launch, or accommodate
the preservation of existing backup preferences. This Technical Note shows how to
create or configure a custom Backup.XML preference file or preserve an existing
Backup.XML file for use with distributed applications independent of the native 4D
Backup Preferences dialog.

Introduction
--

4D creates and maintains the application's backup preference file relative to the
location of the structure file. This fact creates a situational challenge when it comes
time to deploy a new application. This is especially true when deploying an update
to an application that has an existing backup preference file and the data file is
stored independently of the structure file.

The purpose of this Technical Note is to show how to manage backup preferences
for distributed applications. It shows how to create a custom Backup.XML file or
preserve an existing Backup.XML file.

This Technical Note includes a component that accomplishes the most sophisticated
tasks in the creations and management of backup preferences. It also shows how
to code a host application in a compiler friendly way to support optional inclusion of
the component with a distributed application.

The Backup Preferences Management Problem
--

Building an application

When developing a 4D database that will be distributed to a customer, or within
a diverse organization, the normal focus is on getting the main features of the
database working. The testing of basic features, such as Backup for the merged
application, is usually one of the last steps. This Technical Note will discuss
issues and solutions for the often overlooked step of setting the backup
preferences during the deployment of a distributed application.

Here is a typical scenario:

The database development is complete. The developer tests the application,
including the Backup system. Everything seems fine. All the backup information
is relative to the machine the testing was conducted on.

Note: By testing the Backup system a Backup.XML project file is created.

4

Now, the developer is ready to test the database as a built/merged Server
application as it will be delivered to the customer. However, once the application
has been built, not all files would have been copied inside the “Server” folder.
Some of these files are under the “Preferences” folder. Therefore, the developer
needs to copy some files from the “Preferences” folder to the new server’s
folder. However, the developer should not just copy the entire “Preferences”
folder since it often contains unnecessary files like the XML file used to build the
application.

At this point, the application seems to be working on the development machine.
The next step is to copy the application onto another machine and launch it.
Here is where the first problem is often encountered.

A folder cannot be found. 4D asks for the user to select a new folder path. What
is going on here? How can this warning message be avoided?

The 4D Backup Project File
--

The problem comes when 4D needs valid backup preference settings. Preferences
that tell 4D when, where, and what to backup. The Backup.XML file contains the
when, where, and what for all files to be backed up. In the Backup.XML file:

• The where is now invalid because the newly deployed database has been
moved to a new machine, and

• 4D asks for a new Backup path before the database can launch because the
backup settings of the database or the 4D code in the database is configured
to run a backup immediately.

5

So, how can this dialog be avoided?

One solution is to not place the Backup.XML file into merged applications, such as a
built-server or standalone application. When the deployed application is launched
and a backup is requested and there is no Backup.XML file, 4D will create a new
one with all the default values. At this point, the backup may be launched.

Note: When a brand-new database performs a backup for the first time, 4D performs the
backup and creates the default Backup.XML file in the “Preferences/Backup” folder,
next to the structure file.

The default values may not match the current needs of the database because the
developer might need to define some of the backup settings, such as:

• The number of archives to keep

• Extra files to be archived

• Advanced settings to speed up the backup process

• The specific backup schedule in mind

In this situation, where the developer provides his own predefined backup project
file, users will still see the invalid backup path dialog. This is because the
destination path specified in the Backup.XML may no longer be valid after moving
the database.

Three different approaches to Backup.XML management
--

Copy and Restore the Backup.XML File

If the situation is that the existing Backup.XML file needs preservation, the most
direct option is to copy the existing Backup.XML file whenever the database is
closed and restore the file when the database is relaunched.

In the component database there is the method BackupXML_Archive, which is
meant to be used in the On Server Shutdown and On Exit database methods.
The first thing this method does is discover where the <database>.4DD file is
stored. The assumption is that the data file will not be located with the merged
application structure file. The method Get_4DD_Folder accomplishes this task:

 // There's no constant to "Get 4D folder"
 // that returns the path to the data file
 // (
$4DDPath_T:=Data file
$Ndx:=Length($4DDPath_T)
 //)

 //======================== Method Actions =============================

 // From the end of the string, find the ending folder separator

6

 // (
While (($4DDPath_T≤$Ndx≥#Folder separator)&($Ndx>0))
 $Ndx:=$Ndx-1
End while
 //)

 //======================== Clean up and Exit ============================

 // Return the path to the <database>.4DD file
 // (
If($Ndx>0)
 $0:=Substring($4DDPath_T;1;$Ndx)
End if
 //)

After the path to the data file has been acquired, the Backup.XML file is copied
to and save as a BLOB next to the data file:

If ($4DDPath_T#"")
 $BkUpPath_T:=Get 4D folder(Database Folder)+\
 "Preferences"+Folder separator+\
 "Backup"+Folder separator
 …
 DOCUMENT TO BLOB($BkUpPath_T;$BLOB)

 $4DDPath_T:= $4DDPath_T +"Backup.blob"
 If (Test path name($4DDPath_T)#Is a document)
 $Ref_H:=Create document($4DDPath_T)
 CLOSE DOCUMENT($Ref_H)
 End if

 BLOB TO DOCUMENT($4DDPath_T;$BLOB)
 …
End if

In the example database the method BackupXML_RestoreFile is meant to be
used in the On Server Startup and On Startup database methods. Again, the
first thing this method does is discover where the <database>.4DD file is
stored. After that it transforms the BLOB back into a UTF-8 encoded XML file and
saves it in the Preferences/Backup/ folder:

 // Convert the blob back to XML
 // (
DOCUMENT TO BLOB($4DDPath_T;$BLOB)
$XML_Ref_T:=DOM Parse XML variable($BLOB)
 //)

If (OK=1)
 // Restore the Backup.XML file in UTF-8 format
 // (
 $BkUpPath_T:=$BkUpPath_T +"Backup.XML"
 DOM EXPORT TO FILE($XML_Ref_T; $BkUpPath_T)
 //)
End if

Building a Backup.XML File

7

Given that the developer may need to specify their own values in the
Backup.XML file, a better solution might be to create a custom Backup.XML file
when starting the application. Using 4D’s built-in commands to parse and write
XML documents, the developer just needs to know the XML tags that will be
used. The structure of these tags and generating the document is quite easy.

If the developer does not want the user to be involved in this process, they can
create this document from the On Startup or On Server Startup database
method of the application. When starting the database, the developer can check
to see whether the Backup preference file exists or not by using the method
BackupXML_Exists. If the file does not exist, the developer may create a new
XML file. The current user will not notice this operation. The backup will be ready
to perform.

If the developer wants the user to be informed about the creation of the
Backup.XML file and give them the ability to modify some settings, then a dialog
could be displayed so that the user can change the settings. Based on the
developer’s hard-coded values and the user’s last modifications, the developer
can regenerate the Backup.XML file.

Note: The developer must be sure that the XML generated is well formed, e.g. that all
parameters are valid or that there is not any extra space characters at the end of the
values. Otherwise 4D Backup will generate its own default values for each malformed
object.

Another Concept

Another concept is to have a Backup.XML file outside the application that will be
used as a template. If the XML format changes, all the developer has to do is
change this template XML file; there is no need to modify any 4D code, unless a
new variable must be declared and initialized.

How does this work? The idea is to have a Backup.XML template file in which all
the values are defined by 4D HTML tags. These variables are pre-defined in the
4D code. To keep things as basic and simple as possible, the 4D code does not
use any XML commands; it just loads the template and executes the PROCESS
HTML TAGS command, update for v12, and creates a new Backup.XML file in the
“Preferences/Backup” folder for the database.

The XML template is provided with the component. Its name is Backup.XML2
and resides in the “Resources” folder.

Here is a summary of the steps involved in this technique:

• After building the merged 4D Server application, the developer is suppose
to copy the “Preferences/Backup” folder to the “Server” folder. Instead of
copying the Backup.XML file, install the BKP_Manager component.

8

• When launching the database, the On Server Startup method checks if a
Backup.XML file exists.

• To get the path of the “Preferences” folder, use the Get 4D folder
command and append "Preferences" + "Folder separator" + “Backup” to
the folder path. Another technique would be to use the Structure file path
instead. However, the Get 4D folder command is simpler and faster.

• Once the path has been computed, a call to Test path name on that path
can be used to tell whether the Backup.XML file exists or not.

• If a Backup.XML file exists that means that the backup settings have
already been set. The database is prepared and can continue.

• If the file does not exist there should be a new installation. Here, the
developer has a few different choices on how to create the Backup.XML
file:

° The developer can make this completely invisible to the user. They can
generate the Backup.XML file with their own pre-defined variables.

° If the developer wants to give the user the ability to choose the folder
right now or later, a request dialog can be used.

° Finally, the developer might want to offer the user some direct control
over the Backup settings. An “Advanced” backup settings dialog is
provided in the component.

From the component, a simple dialog is displayed where the user can choose the
backup destination folder. This dialog also contains a button that displays an
Advanced Settings dialog that converts almost all options that the user can see
in the default Backup Preferences dialog. Once done, the PROCESS HTML TAGS
command is used to process the Backup.XML2 template and save the result as
the Backup.XML file in the “Preferences” folder, more on this later.

The Backup.XML2 File

This file is just a default 4D Backup project with some modifications. All values
have been replaced by 4D HTML tags such as 4DTEXT and 4DIF for when the
values can be different.

Here is the list of all variables used in the template file (and also defined in the
Advanced Settings dialog) with the corresponding XML key tag. For detailed
documentation for each key refer to the 4D XML Key Backup PDF.

Variable Name Tag Name Values

DBNameItems_L <DatabaseName><ItemsCount> Integer

9

Variable Name Tag Name Values

DBNameItems_aT <ItemsX> Pathnames

LBPathItems_L <LastBackupPath><ItemsCount> Integer

LBPathItems_aT <ItemsX> Pathnames

LBLogItems_L <LastBackupLogPath><ItemsCount> Integer

LBLogItems_aT <ItemsX> Pathnames

CBSetItems_L <CurrentBackupSet><ItemsCount> Integer

CBSetItems_aT <ItemsX> Integer

LBDateItems_L <LastBackupDate><ItemsCount> Integer

LBTimeItems_aT <ItemsX> ISO DateTime

LBTimeItems_L <LastBackupTime><ItemsCount> Integer

LBTimeItems_aT <ItemsX> ISO DateTime

BKP_CB_RestoreLastBKP_L <AutomaticRestore> True or False

BKP_CB_IntegrateLastLog_L <AutomaticLogIntegration> True or False

BKP_CB_StartDbAfterRestore_L <AutomaticRestart> True or False

BKP_CB_IfModified_L <BackupIfDataChange> True or False

BKP_CompressionRate_aT <CompressionRate> None, Fast, or Compact

BKP_RedundancyRate_aT <Redundancy> None, Low, Med. Hi.

BKP_InterlacingRate_aT <Interlacing> None, Low, Med. Hi.

BKP_DelOldBKP_aT <EraseOldBackupBefore> True or False

 <CheckArchiveFileDuringBackup> True or False

 <BackupJournalVerboseMode> True or False

BKP_CB_KeepLastBKP_L <Enable> True or False

BKP_BackupSet <Value> Integer (Default is 3)

BKP_RB_AlwaysWaitBKP_L <WaitForEndOfTransaction> True or False

BKP_NbMinWait_L <Timeout> Integer (Default is 1)

BKP_RB_RetryNextTime_L <TryBackupAtTheNextScheduledDate> True or False

BKP_TimeRetry_aT <TryToBackupAfter> Hours, Minutes, Seconds

10

Variable Name Tag Name Values

BKP_CB_CancelRetryBKP_L <AbortIfBackupFail> True or False

BKP_NbTries <RetryCountBeforeAbort> Integer (Default is 5)

BKP_SegmentSize_aT <DefaultSize> 0, 100, 200, 650, or 700

BKP_CB_StructureFile_L <IncludeStructureFile> True or False

BKP_CB_DataFile_L <IncludeDataFile> True or False

BKP_CB_AltFile_L <IncludeAltStructFile> True or False

BKP_BackupFileDest_T <DestinationFolder> Pathname

BKP_SA_Attatchments_L <IncludesFiles><ItemsCount> Integer

BKP_SA_Attatchments_aT <ItemX> Pathnames

BKP_RB_Sched_NoBKP_L True or False

 <Frequency> Hourly, Daily, Weekly,
Monthly

BKP_RB_Sched_Hours_L True or False

BKP_SchedEveryHours_L <Hourly> <Every> No. of hrs. (Def is 12)

BKP_SchedStartHours_aT <StartingAt> ISO DateTime

BKP_RB_Sched_Days_L True or False

BKP_SchedEveryDay_L <Daily><Every> No. or Days (Def is 1)

 <Hour> ISO DateTime

BKP_RB_Sched_Weeks_L True or False

BKP_SchedEveryWeek_L <Weekly><Every> No. of Wks. (Def is 1)

BKP_CB_SchedEveryMonday_L <Monday> <Save> True or False

 <Hour> ISO DateTime

BKP_CB_SchedEveryTuesday_L <Tuesday> <Save> True or False

 <Hour> ISO DateTime

BKP_CB_SchedEveryWednesday_L <Wednesday> <Save> True or False

11

Variable Name Tag Name Values

 <Hour> ISO DateTime

BKP_CB_SchedEveryThursday_L <Thursday> <Save> True or False

 <Hour> ISO DateTime

BKP_CB_SchedEveryFriday_L <Friday> <Save> True or False

 <Hour> ISO DateTime

BKP_CB_SchedEverySaturday_L <Saturday> <Save> True or False

 <Hour> ISO DateTime

BKP_CB_SchedEverySunday_L <Sunday> <Save> True or False

 <Hour> ISO DateTime

BKP_RB_Sched_Months_L True or False

BKP_SchedEveryMonth_L <Monthly><Every> True or False

BKP_SchedStartMonth_aT <Hour> ISO DateTime

BKP_SchedEveryMonthDay_L <Day> 1, 2, 3… 29

Component and Demo
--

This Technical Note includes a component and demo database. The BKP_Manager
component was created to be used in one of two ways:

• As a one-time use component. Simply use the component once the database
is ready for deployment and then remove it, or

• As an integral part of the database, making it easier for administrators to
audit or make changes to backup settings.

Demonstrated in the startup and shutdown methods of the demo database is how
to support compiler-friendly calls to the component if the decision is made to
compile a database application for deployment and make the use of the component
optional.

The environmental assumption for the demo database is that it is a database
application that will be distributed to a client, and the data file is stored externally

12

from the structure package. The image below depicts the conceptual organization of
the deployed database.

The Demo Data Folder

The primary purpose of demo database is to demonstrate options developers
and administrators have when it comes to managing backup preferences. Having
options in the management of backup preferences is really important when the
data file is stored separately from the database structure file. In addition, this
demo highlights a few significant protocols within 4D that a designer or
administrator needs to be aware of when configuring backup preferences.

By default, 4D will back up the structure and data files as well as the “.4DIndx”
file. The “.4DIndex” file is backed up as an attachment file. If “Replication” is
enabled, it also includes the “.4DSyncData” and “.4DSyncHeader” files as
attachment files.

When 4D adds the “.4DIndx” it will enter it in the “Attachments” list using a
relative path such as “/.{databaseName}.4DIndx.” This is because 4D assumes
that the data file is stored with the structure file. This is not the case when
Replication is enabled and “.4DSyncData” and “.4DSyncHeader” files exist.

The relative path to the “.4DSyncData” and “.4DSyncHeader” files, along with

13

the “.4DMatch” and “.journal” files is based on the location of the data file and
not the structure file. All these files are created and maintained by 4D in the
folder that the data file exists in.

The above image is a screenshot of how the folder is organized; this contains
the data file, BKP_Demo.4DD. In addition to the files 4D creates and maintains
in the same folder as the data file, there is a folder titled “Backups” that is
designated in the preferences as the destination folder for backup and a file
named "Backup.blob" that will be explained in detail in the discussion of the
component.

NOTE: Though all the files in the demo carry the same name as the structure file, if the data
file has a name that differs from the structure file, all the files in the data folder
shown above would have the name of the data file instead of the name of the
structure file. The ramifications of this will be discussed in detail in the component
discussion to follow.

The Demo Structure folder

The demo structure folder, BKP_Demo, shown in the image below, conceptually
represents what the folder of a deployed application structure would look like. It
would have a few additional contents if it were a merged standalone application

or a built Client-Server application.

The BKP_Manager Component

The image on the right shows the contents of the
BKP_Manager component package. The only

14

nonstandard item in the package is the Backup.XML2 file in the “Resources”
folder. The purpose and contents of the file is described later in this section.

The User Constants plugin was created using the 4D Pop component and
contains the constant Backup Prefs Folder, which is used in methods that need
the On Server path to the “Preferences/Backup” folder.

Component Client-Server Interaction

The primary purpose of the BKP_Manager component is to make
management of the Backup.XML file easy and portable. The component also
provides an excellent study in writing a component that executes on a
remote machine, while actively collecting and saving files stored on the
server machine.

There are numerous methods in the component that have the “Execute on
Server” property set. It is necessary for this component, while executing on a
Client to copy file contents between platforms, test pathnames on the server,
and to create and save files on the Server. To make it easy to reference
which method has what properties, the properties for a method are listed in
the header section of each method. An example header is shown below:

If (False)
 Begin SQL
 /*
 OnServer_Get_4D_Folder

 Purpose: Get the pathname of a folder on the server machine

 $0 - TEXT - Get the absolute local path on the server drive
 $1 - LONGINT - Type of folder
 $FolderType_L of Backup Prefs Folder (99) is Preferences/Backup folder
 If it does not exist, it is created

 Method Properties: Invisible / Shared with Host / Execute on Server
 */
 End SQL
End if

The coding style of using Begin/End SQL with SQL block comments “/* */” is
documented in Tech Note Coding differently in 4D v12. The nice thing about
this style is that it eliminates multiple lines beginning with double slashes
(//).

Component Operational Concept

The operational concept of the component is to do three things;

• Archive the current Backup.XML file whenever the host application
shuts down. This is accomplished by calling the component method
BackupXML_Archive from Database Methods On Server Shutdown or
from On Exit for a standalone host.

15

• Restore the Backup.XML file from the archived file whenever the host
application starts up. This is accomplished by calling the component
method BackupXML_Restore from Database Methods On Server
Startup or from On Startup for a standalone host.

• Provide a custom interface and methodology for the creation of the
backup preferences file, Backup.XML. This is accomplished by calling
the component method M_CheckBackup from a host project method.

BackupXML_Archive

The BackupXML_Archive method is called from the host application’s
database shutdown or exit method to archive the current Backup.XML file.
The Backup.XML file is archived into the same folder with the data file in a
file named BackupXML.blob. If the data file is collocated with the structure
file then another external folder (such as the Active 4D folder) should be
chosen for BackupXML.blob file. The issue to avoid when selecting an
external folder is that of selecting a folder that the host application does not
have “write permission” for.

BackupXML_Restore

The BackupXML_Restore method is called from the host application’s
database startup method to restore the archived Backup.XML file to be the
current Backup.XML file. It is especially important to do this at startup when
deploying a new structure package to make sure that the local backup
preferences are present before any scheduled backup.

M_CheckBackup

The M_CheckBackup method can be called from a host project method,
object method, or menu method. It launches a new process for creating
custom backup preferences.

The code snippet below shows the steps involved in creating the custom
backup preferences. Following the confirmation to check the backup settings
the steps are:

• Capture what type of host application is running, server or standalone

• Validate the pathnames in the current Backup.XML file

• Edit and save the custom backup preferences

CONFIRM("Do you want to check your backup settings?";"Yes";"No")
If (OK=1)
 $HostType_L:=Get_Host_AppType

 // Validate the pathname entries in the Backup.xml file
 // (

16

 ARRAY TEXT(ValidateErrors_aT;0)
 $Result_L:=BackupXML_Validate (->ValidateErrors_aT)
 If ($Result_L=0)
 // Report errors in the Backup.xml file
 // (
 $Ndx:=Open form window("ValidationErrors_d";\
 Movable form dialog box;\
 Horizontally Centered;\
 Vertically Centered)
 DIALOG("ValidationErrors_d")
 CLOSE WINDOW($Ndx)
 //)
 End if
 //)

 //======================== Method Actions =======================

 Case of
 : ($HostType_L=4D Server)
 M_BackupInit_Server

 : (($HostType_L=4D Local Mode) | ($HostType_L=4D Volume Desktop))
 M_BackupInit_Local

 Else
 ASSERT(False;"Unsupported 4D Mode")

 End case
End if

The method BackupXML_Validate loads the contents of the host’s Backup.XML
file and tests the validity of each pathname. Before the pathnames are tested
for validity, each pathname is tested to see whether it is an absolute pathname
or a relative pathname.

Pathname type check, absolute or relative, is performed by the component
method BackupXML_Pathname_PreCheck. The check is preformed because
the command Test path name does not handle relative pathnames, it requires
an absolute pathname. If the pathname is a relative pathname, it starts with
“./,” then the pathname to the data file is captured with the component method
OnServer_Get_4DD_Folder so the absolute path can be created.

The leading “./” is stripped from the relative pathname and is then checked for
the presence of the string “{databaseName}.” The string “{databaseName}” is
internal coding that 4D will sometimes places on the “.4DIndx” file as the first
included file in the backup preferences. If this string is present, the command
Replace string is used to replace it with the full pathname of the data file, minus
the suffix “4DD.”

After all relative paths have been converted to absolute paths; they are tested
with the command Test path name. If the test fails, the pathname is captured in
an array. After all pathnames have been checked whether there are any
pathnames present in the array, the dialog shown below is displayed.

17

For all included files and folders, the component creates absolute pathnames for
all attachments instead of relative paths that 4D will enter for selected
attachments. Path strings can be long, long enough to extend beyond the
viewing area of the list box. The complete path can be viewed by clicking on a
row in the list box. A popup menu will appear, displaying the target file or folder
at the top to the root of the path at the bottom.

Invalid paths can have one of the following headers:

• Invalid path <DatabaseName>:[n]
• Invalid path <LastBackupPath>:[n]
• Invalid path <LastBackupLogPath>:[n]
• Invalid path <IncludesFiles>:[n]

Because these elements can have multiple entries, each line includes its item
sequence number, [n]. The purpose of the sequence number is to make sure
that the correct element is saved back to the Backup.XML file.

If the “Backup.XML Invalid Pathnames” dialog is presented with invalid
pathnames, an editing dialog will be presented. The dialog, shown below, will be
presented once for each type of invalid path that was present in the
“Backup.XML Invalid Pathnames” dialog.

18

To correct an invalid pathname, a click on the invalid pathname will trigger the
presentation of a popup menu that lists all the elements in the path, from the
target file or folder to the root. See below:

The last item in the menu will trigger the execution of either the Select
document or Select folder command. To help the user remember what document
or folder needs to be selected, the appropriate prompt is present in the dialog,
as shown in the next image.

19

Once the new file or folder is selected, the invalid pathname is replaced by the
new valid pathname, as shown below.

Once it is determined that all pathnames in the Backup.XML file are valid, the
next dialog will appear (as shown below). This window allows users to edit the
advanced backup settings and create the new Backup.XML file.

Note: If any pathnames have been corrected, they will only be applied to the Backup.XML
file if the Advance Settings dialog is reviewed.

20

The “Continue” button will be enabled whenever the “No…” radio button is
selected. When the “Yes…” radio button is active and the “Advanced Settings”
dialog has been reviewed.

Advance Settings dialog

The “Advance Settings” dialog consists of four pages: Scheduler, Configuration,
Backup & Restore, and Transactions. It contains all of the settings available from
the “Backup Preferences” dialog, accessed by menu from Design/Database
Settings…/Backup or by using the command OPEN 4D PREFERENCES.

The Scheduler page, shown below, is used to set the when and frequency of
performing backups.

The only tricky part in setting when and frequency for backup is when the choice
is “Every n Month(s).” The menu provides three choices: First day, Last day, and

21

Day number. When day number is selected an additional variable becomes
visible to contain the day number of the backup.

Note: If Day Number is chosen, the maximum day that can be set is 28.

The Configurations page (shown below) provides for all the settings of the
native dialog with the exception of the additional popup menu. The popup menu
displays the complete path when the pathname is too long for full display in the

list box.

22

The Backup & Restore page is identical to that of the native preference dialog.

The component contains one additional page, Transactions. This page provides
the preferences for what delay should be observed when transactions are active

or indexes are in the process of being built.

Processing the settings
--

Once the Advanced Settings dialog has been reviewed and dismissed, and the
Continue button clicked, the Backup.XML2 file is loaded for processing.

$Path_T:=Get 4D folder(Current Resources folder)+"Backup.XML2"
...
 // Load the marked up Backup.XML2 file
 // (
$Ref_H:=Open document($Path_T;”utf8”)
RECEIVE PACKET($Ref_H;$XML_T;Get document size($Ref_H))
CLOSE DOCUMENT($Ref_H)
 //)

 // Process the HTML tags
 // (
PROCESS HTML TAGS($XML_T;$XML_T)
 //)

 // Save back to the server and archive it
 // (
OK:=BackupXML_Transfer_LocToSvr ($XML_T)
If (OK=1)
 $Ndx:=Execute on server("BackupXML_Archive";512;"BackupXML_Archive";*)
End if
 //)

The Backup.XML2 file is read from the Resources folder of the component into
the text variable $XML_T. The next step is the unique and unusual action of this
whole process. The command PROCESS HTML TAGS will replace all the variables
imbedded within the XML file with the values from the variables of the same
name that now reside in memory on the process stack.

23

So, how does a command intended for use with HTML files and is listed under
the “Web Server” theme in the language come into play here? Simple, XML's
purpose is to carry data; HTML's purpose is to display data. But, to display data
is has to carry it. Though their purposes are different, the syntax of the two is
the same. Beginning with HTML version 4, the XML rule of requiring the file to be
“well-formed” was adopted.
Well-formed simple means
that the document conforms
strictly to the published rules
HTML syntax.

That is where HTML and XML
overlap. The markup of the
language is so similar that the
command PROCESS HTML
TAGS does not distinguish one
from the other. The overlap in
the two languages provides
the opportunity to use the 4D
command in a very innovative
and productive way.

Once the tags have been processed, the file is then written out as follows:

$Ref_H:=Create document($Path_T+"Backup.XML";"utf8")
If (OK=1)

 SEND PACKET($Ref_H;$XML_T)
 CLOSE DOCUMENT($Ref_H) // Close the document
 $0:=OK

End if

Notice that when the XML files are opened and created, the file type of “utf8” is
used. Files saved as XML must be in the “utf8” format.

Summary
--

This Technical Note showed how to manage backup preferences when distributing a
new merged application. It showed how to create a custom Backup.XML file and
how to preserve an existing Backup.XML file which is to be used by the 4D Backup
system with distributed applications.

As an added feature, this Technical Note includes a component that can be used to
accomplish the most sophisticated tasks in the creations and management of
backup preferences.

24

Conclusion
--

When creating a standalone or built client-server application for distribution sans
data file in 4D v11 SQL, 4D v12, or 4D v13, it may be desirable to be able to
accommodate custom backup preferences. These preferences may accompany the
application or accommodate preservation of existing backup preferences of an
installed system. This Technical Note showed multiple methods on how to create a
custom Backup.XML file and how to preserve an existing Backup.XML file. This
Technical Note also demonstrated how to write a component that executes on a
remote client and collect and saves files on a server machine.

