

1

Chat Integration in 4D v11 SQL

By Atanas Atanassov, Technical Services Team Member, 4D Inc.

Technical Note 09-44

2

Table of Contents
--

Table of Contents ..2 
Abstract ...3 
Introduction..3 
Requirements ...3 
Explanation of the Model ..3 
Implementation...4 

List of Available Clients Form..4 
Chat area ..4 
Client side implementation...7 
Server Side Implementation...8 

Demo Database...10 
Conclusion..12 

3

Abstract
--

Being able to communicate with users at other workstations is important in many
businesses. Having chat functionality integrated in a developer’s application can
thus be very beneficial. Users can exchange critical information such as what work
they are doing in the application or even just say hello. 4D Server has a built in
feature for sending messages to clients, but it is not meant to be used like a chat
application. Fortunately, chat functionality can be built fairly easily with 4D v11
SQL.

Introduction
--

4D Server v11 SQL can send messages to clients with important information from
the server administrator. Clients connected to the server can send replies to the
server and if they have Designer or Administrator rights. Sometimes it is important
for users to send short messages to other users. This can easily be done in 4D.

This Technical Note explains how to integrate chat functionality in 4D. The chat
area is built with 4D’s Web Area. This gives developers an easy solution to create
text areas for displaying typed messages. Using the Web Area approach gives
developers the ability to use JavaScript and CSS to customize the view and the feel
of the messages.

An explanation of the model used to build the chat application is introduced first
then continues with building the chat UI and explanation of the message flow
between clients through the server.

A sample database is included that demonstrates the approach used for building the
chat application.

Requirements
--

The minimum requirements are 4D Server v11 SQL Release 5 and two 4D v11 SQL
Release 5 applications connected to the server.

Explanation of the Model

When a client connects to the server, it is registered with a unique name and it is
visible for all other clients connected to the server. Other clients can start a chat
with this client and vice versa. For simplicity we name the client that initiates the
chat as the “Caller” client and the requested client as the “Called” client.

Once the Caller client opens a chat session with the Called client, it sends a
message which is stored temporary on the server. During the chat initiation process
on both clients, a process is launched that periodically checks for sent messages. If
there are any, the process gets and delivers them to the right client. Messages that

4

are sent to the server have their status set to false-the message is not read yet.
Once it is read, the status is changed to true. The process of getting messages
grabs only the unread messages.

Implementation

The implementation starts with creating the forms to list all available clients and
the chat UI.

List of Available Clients Form

The form has a List box based on arrays and two buttons “Cancel” and “Chat”

The names of all registered clients are saved in the array named
“<>userNames_at”.

 The “Chat” button loads the chat window/area. Every chat window starts in its
own unique process. Thus clients can initiate multiple chat sessions.

Chat area

The chat form contains a Web Area that displays the ongoing conversations
between two clients. Every chat has its own chat area. The Web Area allows

5

users to customize the appearance and text flow of all messages by using CSS
and JavaScript.

The html page called “Chat.html” is in the Resources folder and is available to all
clients connected to the server. The contents of this file are displayed in the
Web Area and it is updated dynamically during the conversation. Every message
is placed in a separate “div” tag and is added to the bottom of the page.

Note: “Div” tags define a division or a section in an HTML document. They are often used to
group block-elements to format with styles.

Let’s look at the code in Chat.html

The first elements in the head tag are styles. The style tag contains the
definition of all CSS for the html page:

<style type="text/css">
 .send
 {
 /* style for the sent message */
 background-color:#E0FFFF;
 text-align:left;
 font-family: Verdana;
 font-size:12px;
 padding: 5px;
 }

6

 .received
 {
 /* style for the received message */
 background-color:#FFF8C6;
 text-align:right;
 font-family: Verdana;
 font-size:12px;
 padding: 5px;
 }

 .text {text-align:center;} /* header text */
 p {margin:0;} /* text in p tags */
 div {margin-bottom:5;} /* distance between the div tags */

 .messageSend
 {
 /* style for the send header */
 background-color:#E0FFFF;
 font-style:italic;
 font-size:9px;
 text-align:center;
 font-family:Arial;
 padding: 5px;
 }

 .messageReceived
 {
 /* style for the receive header */
 background-color:#FFF8C6;
 font-style:italic;
 font-size:9px;
 text-align:center;
 font-family:Tahoma;
 padding: 5px;
 }

 .span
 {
 /* style for the text inside p tags */
 margin-bottom:6;
 margin-top:6;
 margin-left:5;
 margin-right:5;
 }
</style>

 “Send” and “receive” classes customize the view of sent and received
messages. They are formatted differently to help users quickly distinguish
between sent and received messages.

The message header and body are separated in different paragraphs. Thus we
have different styles for each of them. The classes “messageSend”,
“messageReceived” and “text” control the appearance of message headers.

The JavaSctip function called addChart controls the dynamic representation of all
elements in the web area.

 <script type="text/javascript">
 function addChat(textToAdd, action, client){

7

 var div = document.getElementById("MainChatDiv");
 var p, text;
 var chatMessage;

 dv = document.createElement('div');
 document.body.appendChild(dv);
 p = document.createElement('P');
 p1 = document.createElement('P');
 span = document.createElement('span');

 if(action == 'send'){
 p.className = 'send';
 p1.className ='messageSend';
 }else if(action == 'received'){
 p1.className ='messageReceived';
 p.className = 'received';
 }

 chatMessage = 'Message from ';
 chatMessage +=client;
 chatMessage +=' ';

 var currentTime = new Date();
 var hours = currentTime.getHours();
 var minutes = currentTime.getMinutes();

 if (minutes < 10){
 minutes = "0" + minutes
 }

 var hoursShort = hours % 12;
 chatMessage += hoursShort+':'+minutes;

 if(hours > 11){
 chatMessage +='pm';
 } else {
 chatMessage +='am';
 }

 myText1= document.createTextNode(chatMessage);
 text= document.createTextNode(textToAdd);
 span.className = 'span';
 span.appendChild(text);
 p1.appendChild(myText1);
 p.appendChild(span);
 dv.appendChild(p1);
 dv.appendChild(p);
 window.scrollTo(0,10000);
 }

 </script>

Client side implementation

Every client is registered with a unique name during the connection to 4D
Server. The registered client name is a combination based on the machine name
and the user name. For example: StevenJones’ XP_Designer. In this example
the name of the machine is StevenJones’ Xp and the user is logged as a
designer.

8

Note: Multiple clients can use one and the same machine to connect to 4D Server.

Once the Called client is selected from the list of registered clients and the chat
is initiated, the “On Load” form event loads the preferences and content of the
Web Area. When the message is typed, first it is displayed in the Web Area by
using WA EXECUTE JAVASCRIPT FUNCTION and is sent to the server.
Displaying the message and sending to the server is handled in the
Ch_EnterKey project method.

C_TEXT($processName_t)
C_LONGINT($processState_l)
C_INTEGER($processTime_h)

PROCESS PROPERTIES(Current
process;$processName_t;$processState_l;$processTime_h)
requestedClient_t:=Replace string($processName_t;"ChatWith_";"")
WA EXECUTE JAVASCRIPT FUNCTION(vchatArea_WA;"addChat";*;vTypeMessage;
"send";UTIL_EscapeString (<>clientId_t;"'"))
Ch_sendText (<>clientId_t;"sendMessage";requestedClient_t;vTypeMessage)
vTypeMessage:=""

This method first gets the process name for the ongoing conversation, displays
the sent message in the Web Area and sends the message to the server.

The Ch_checkMessages project method frequently checks for messages left on
the server for the Caller and Called clients. The “sendText_b” variable contains
all messages for a requested client, either Caller or Called. It is a blob variable
containing an array with messages. We use an array because several messages
can be left on the server for a client. Here is the code for this method.

C_TEXT($message_t;$client_t)
C_LONGINT($index_l;$clientPos_l)
C_BLOB(sendText_b)
ARRAY TEXT($messageToReceive_at;0)

sendText_b:=Ch_getText (requestedClient_t)

 `Getting the name of the requested client
 `---
$clientPos_l:=Position (<>clientId_t;requestedClient_t)
$client_t:=Substring(requestedClient_t;1;$clientPos_l-2)
 `---
BLOB TO VARIABLE(sendText_b;$messageToReceive_at)
If (Size of array ($messageToReceive_at)>0)
 For ($index_l;1;Size of array($messageToReceive_at))
 WA EXECUTE JAVASCRIPT FUNCTION(vchatArea_WA;"addChat";*;
$messageToReceive_at{$index_l};"received";UTIL_EscapeString ($client_t;"'"))
 End for
End if

Server Side Implementation

Ch_sendText and Ch_getText project methods are executed on the Server.
Both methods have the “Execute on Server” property checked.

9

The Ch_sendText method populates the message, status of the message and
the ongoing chat information into the <> message_at_at,
<>message_read_ab_ab and <>chatClients_at arrays. These three arrays are
initialized upon Server start. <>message_read_ab_ab is a Boolean array that
holds the status of the sent messages. When a message is sent to the server its
status is set to False, and when it is sent to the requested client, the status of
the message is set to True. This array and the <>message_at_at array are two
dimensional arrays. This is a convenient way to store all conversations between
the clients. The arrays are synchronized based on the <>chatClients_at array
that contains the information for all ongoing conversations. The first chat is
saved in the first element and this is the first row for the <>message_at_at and
<>messages_read_ab_ab arrays.

$clientCaller_t:=$1
$action_t:=$2
$clientCalled_t:=$3
$messge_t:=$4

$chat_t:=$clientCaller_t+"-"+$clientCalled_t

 `filling the elements of message_a and message_read arrays

$chatFound_l:=Find in array(<>chatClients_at;$chat_t)

If ($chatFound_l=-1) `chat is already started

 <>colIndex_i:=1
 $sizeChatClient_l:=Size of array(<>chatClients_at)
 <>rowIndex_i:=$sizeChatClient_l+1
 INSERT IN ARRAY(<>chatClients_at;<>rowIndex_i;1)
 <>chatClients_at{<>rowIndex_i}:=$chat_t
 INSERT IN ARRAY(<>message_at_at;<>rowIndex_i;1)
 INSERT IN ARRAY(<>message_read_ab_ab;<>rowIndex_i;1)

Else `chat not found

 $arrayColSize_l:=Size of array(<>message_at_at{$chatFound_l})
 <>rowIndex_i:=$chatFound_l
 <>colIndex_i:=$arrayColSize_l+1

End if

Case of
 : ($action_t="sendMessage") `sending message

 INSERT IN ARRAY(<>message_at_at{<>rowIndex_i};<>colIndex_i;1)
 INSERT IN ARRAY(<>message_read_ab_ab{<>rowIndex_i};<>colIndex_i;1)
 <>message_at_at{<>rowIndex_i}{<>colIndex_i}:=$messge_t
 <>message_read_ab_ab{<>rowIndex_i}{<>colIndex_i}:=False

 `Check to see if the chat window is still opened on the client machine

 EXECUTE ON
CLIENT($clientCalled_t;"Ch_P_startSession";$clientCaller_t)
End case

The Execute on client command is used to launch the chat window for the
requested client.

10

The Ch_getText project method is called based on the “On Timer” form event
and checks the see if there are unread messages for the client. All unread
messages are saved in the array named $messageToSend_at. There is rarely
more than one message to send because the timer is set to 0 ticks. Having
more than one message to send can happen if the timing is set to bigger
intervals. The array is saved in a blob variable and this variable is returned to
the client.

ARRAY TEXT($messageToSend_at;0)
C_BLOB(sendText_b;$0)
C_LONGINT($arrayIndex_l;$messageIndex_l)
C_LONGINT($foundFalse_l;$foundat_l)
C_TEXT($clientId_t;$1)

$arrRow_l:=Size of array(<>chatClients_at)
$clientId_t:=$1
$foundat_l:=Find in array(<>chatClients_at;$clientId_t)

If ($foundat_l#-1)
 Repeat
 $foundFalse_l:=Find in
array(<>message_read_ab_ab{$foundat_l};False;$foundFalse_l+1)
 If ($foundFalse_l#-1)
 APPEND TO
ARRAY($messageToSend_at;<>message_at_at{$foundat_l}{$foundFalse_l})
 <>message_read_ab_ab{$foundat_l}{$foundFalse_l}:=True
 End if
 Until ($foundFalse_l=-1)
End if
VARIABLE TO BLOB($messageToSend_at;sendText_b)
$0:=sendText_b

When the chat window is closed, all messages for this chat are deleted from the
server. Message deletion is handled in the Ch_DeleteChat project method.

Demo Database
--

The included sample database, Chat.4dbase, demonstrates the implementation of a
chat application into 4D as described above.

Launch the database with 4D Server v11 SQL. Connect at least two clients to the
server. From the client select the Start Chat option from the Chat menu.

The “Connected client” form is called with the Ch_P_startChat project method and
it loads the list of available clients to talk to.

11

Select one of the available clients and click the Chat button. This loads the chat
window.

Type a message in the typing area and press Send or hit the Return or Enter keys.
The message is displayed in the area above and sent to the server.

Select a client to chat
and press here to start
the chat window

Typing area

12

From the server, it is then sent to the requested client and displayed in the chat
window opened on the client screen.

Conclusion
--

4D v11 SQL has the ability to build applications similar in functionality to ones we
use almost every day to accomplish different tasks such as chatting. The Chat
application is such an example. It accomplishes the same task as popular chat
clients like AIM and Google Talk. The difference is it is integrated in the database
and can be tailored to users requirements. 4D Developers can use the code from
this Technical Note to extend or modify its capabilities, functionalities and look in
their custom chat applications.

Sent message

Received response

