
 1

Database Schemas and Security

By Timothy Aaron Penner, Technical Services Team Member, 4D Inc.

Technical Note 08-43

Abstract
--

4D v11 SQL Release 3 introduces many improvements and features to the 4D v11

SQL line of products. One particularly useful feature is the support of schemas in

4D’s integrated SQL engine. The implementation of this feature has resulted in

modifications to the interface and the introduction of new SQL commands. This

technical note describes the changes to the interface as well as the new SQL

commands. A sample database component is included.

Introduction
--

4D v11 SQL Release 3 introduces many improvements and features to the 4D v11

SQL line of products. One particularly useful feature is the support of schemas in

4D’s integrated SQL engine. The implementation of this feature has resulted in

modifications to the interface and the introduction of new SQL commands. This

technical note describes the changes to the interface as well as how to use each of

the new SQL commands. A comparison to the access rights available in previous

versions of 4D v11 SQL is also covered in this technical note. A sample database

component is included.

Schemas - What are they?
--

Schemas are a way of securing access to the tables in your database for external

connections such as ODBC and SQL.

Comparison to previous versions (v11.0, v11.1, v11.2)
In previous versions of 4D v11, access rights for external connections were set

globally for the database. This access was configured via the SQL preferences:

 2

(SQL Preferences as it is seen in 11.0, 11.1, and 11.2)

From now on (v11.3), the access rights for external connections will be set per

schema and each table can be configured to use one schema. The settings that are

available in the SQL Preferences will now be used for the DEFAULT_SCHEMA which

is automatically applied to all newly created tables as well as any tables that

existed in the database upon upgrading to 11.3.

Each schema can have one 4D Group assigned each of the following access types:

• Read only (data)

• Read/Write (data)

• Full (data and structure)

NOTE: As in previous versions, access control only applies to external connections. The SQL

code executed within 4D via the Begin SQL/End SQL tags, SQL EXECUTE, QUERY BY SQL,

etc., still has full access.

Schemas - Why Use Them?
--

Schemas should be used in any database where people will be connecting through

external means (i.e. via SQL or ODBC), and where data security is a concern.

Schemas are easy to use, easy to set up, and get the job done.

 3

Schemas - How Do They Work?
--

A schema is a virtual object containing database tables. In SQL, the purpose of

schemas is to assign specific access rights to different sets of database objects.

Schemas divide the database into independent entities which together make up the

entire database. In other words, a table always belongs to one and only one

schema.

When a database is created or converted with 4D v11 SQL Release 3 (or a

subsequent version), a default schema is created in order to group together all the

tables of the database. This schema is named "DEFAULT_SCHEMA." It cannot be

deleted or renamed.

Modifications to the DEFAULT_SCHEMA can be carried out either through SQL code

or the SQL page within the Preferences.

(SQL Preferences as it is seen in 11.3)

NOTE: Only the Designer and/or Administrator of the database can create, modify or delete

schemas. If the access management system of 4D is not activated (in other words, if no password has
been assigned to the Designer), all users can create and modify schemas with no restriction.

 4

Schemas are created, modified and deleted via SQL commands. A new option in

the Inspector palette can also be used to assign a table to a schema.

Creating a Schema

Creating a schema is accomplished with the following syntax:

BEGIN SQL

 CREATE SCHEMA mytest;

END SQL

The code snippet above will create a schema named mytest.

Modifying a Schema

Modifications to schemas are done programmatically through the use of SQL

commands. The following sections outline specific syntax for various operations.

NOTE: The DEFAULT_SCHEMA can be modified either through code or through the SQL page

within 4D’s preferences.

Renaming a schema

Renaming a schema is accomplished with the following syntax:

 5

BEGIN SQL

 ALTER SCHEMA mytest RENAME TO test;

END SQL

The code snippet above will rename the schema named mytest to test.

Granting READ Access Rights

Granting READ access to a schema is accomplished with the following syntax:

BEGIN SQL

 GRANT READ ON test TO TeamMembers;

END SQL

The code snippet above will grant READ access to the 4D group named

TeamMembers on the schema named test.

NOTE: 4D allows group names to include spaces and/or accented characters that are not

accepted by standard SQL. In this case, you must put the name between the [and]

characters. For example: GRANT READ ON [schema] TO [admins!]

Granting READ_WRITE Access Rights

Granting READ_WRITE access to a schema is accomplished with the following

syntax:

BEGIN SQL

 GRANT READ_WRITE ON test TO TeamLeaders;

END SQL

The code snippet above will grant READ_WRITE access to the 4D group named

TeamLeaders on the schema named test.

Granting ALL Access Rights

Granting ALL access to a schema is accomplished with the following syntax:

BEGIN SQL

 GRANT ALL ON test TO Managers;

END SQL

The code snippet above will grant ALL access to the 4D group named Managers

on the schema named test.

NOTE: In the current release of 4D v11 SQL, it is not possible to GRANT access to the

EVERYBODY psuedogroup. The workaround for this is to create a 4D group

containing all users, and then set the access right to that group. Newly created

schemas also use the EVERYBODY psuedogroup for both READ and READ_WRITE

access, so simply recreating the schema is another alternative.

Revoking Access Rights

 6

Revoking access sets the group to NOBODY for the access level specified; this is

accomplished with the following syntax:

BEGIN SQL

 REVOKE READ_WRITE ON test;

END SQL

The above code snippet will revoke READ_WRITE access for the schema named

test; essentially setting READ_WRITE to NOBODY.

Applying Schemas

Schemas can be applied either via code or through the table Inspector on the

Structure Editor. The syntax for applying a schema via code is:

BEGIN SQL

 ALTER TABLE [TABLE_1] SET SCHEMA test;

END SQL

The code snippet above will set the schema for [Table_1] to ‘test’.

The following screenshot shows the new menu that has been added to the

“Inspector” window of the Structure Editor:

Deleting a Schema

Deleting a schema is accomplished with the following syntax:

 7

BEGIN SQL

 DROP SCHEMA test;

END SQL

The code snippet above will delete the schema named ‘test’

Other ways of securing your database
--

In addition to the global access rights that were available in previous versions of 4D

v11 SQL, the ‘On SQL Authentication’ database method that was introduced in 4D

v11 SQL Release 2 could be used to trap the connection and do further

authentication checks. This mechanism is still available in 4D v11 SQL Release 3.

Sample Database
--

The sample database included with this technical note comes in two flavors:

• The source database of the component

• The componentized database

The componentized database can be dropped into an existing 4D v11 SQL Release 3

(or higher) project. It will allow you to more easily view and modify the schemas

for the host database. The component method “SE_OPEN_SCHEMA_EDITOR” is

used to open the editor.

The following screenshot shows the schema editor open in a database that only has

the DEFAULT_SCHEMA:

The following screenshot shows the schema editor open in a database that has a

few user created schemas:

 8

Adding a schema
Using the Schema Editor component you can add a schema via the GUI. To do

so, simply click on the “Add” button from within the Schema Editor and the

following dialog will appear:

Modifying a schema
Using the Schema Editor component you can modify a schema by double clicking

on the schema you want to edit. Doing this will bring up the following dialog:

 9

Caveats
It is not possible to GRANT access to the EVERYBODY psuedogroup in the

current release of 4D v11 SQL therefore you will be prompted with a warning if

you try to do this in the component. The workaround for this is to create a 4D

group containing all users, and then set the access right to that group.

Newly created schemas also use the EVERYBODY psuedogroup for both READ

and READ_WRITE access, so simply recreating the schema is another

alternative. However deleting a schema will cause any tables that belonged to

that schema to revert back to the DEFAULT_SCHEMA. You will then need to

reset the schema for each table that was reverted.

Conclusion
--

This technical note described the general concepts of schemas in 4D v11 SQL

Release 3 (or higher). Examples of how to create, modify, and delete schemas

were presented. A sample database component is also presented as a means to

offer an easier way for the developer to create and modify schemas. This

information should allow the 4D v11 SQL developer to utilize schemas.

