
 1

Modifying Data Grid Columns

By Robert Molina, Technical Services Team Member, 4D Inc.

Technical Note 08-11

 2

Abstract
--

The Technical Note provides information about the new, easy to use, API functions
that modify the column properties of the new Data Grid in the 4D Ajax Framework
v11 release 1 (11.1). These newly added functionalities allow developers to deliver
a rich web experience for users with very minimal code involved. A sample
database is included.

Table of Contents
--

Abstract ... 2
Table of Contents.. 2
Introduction ... 3

Referencing Columns.. 3
Example Database .. 4

Installing the 4D Ajax Framework Component .. 4
Hiding and Displaying Columns .. 5

Function: .hideColumn()... 5
Function: .showColumn().. 6
Possible Practical Use ... 6

Column Resizing ... 7
Function: .setColumnWidth() .. 7
Function: .getColumnWidth () ... 8
Function: .allowColumnResize() .. 8
Possible Practical Use ... 8

Column Locking .. 9
Function: .setRightLockedColumns().. 9
Function: dax_dataGrid().. 10
Possible Practical Use ... 10

Inline Editing .. 10
Function: .allowInlineEditing() .. 10
Function: dax_dataGrid().. 11
Possible Practical Use ... 11

Using the Example Database ... 12
Example: Hiding and Displaying Columns... 13
Example: Modifying Column Width .. 15
Example: Allow User Column Resizing ... 18
Example: Locking Columns ... 20
Example: Inline Editing .. 22

Conclusion ... 24
A Note about 4D Web 2.0 Pack .. 25
Related Resources .. 25

 3

Introduction
--

With each revision the 4D Ajax Framework (4DAF) continues to deliver new
features requested by developers. In the latest version of the framework, the Data
Grid has been reworked and redeveloped from the ground up. The result is a
feature-rich grid that provides flexibility and functionality with an easy to use API.
Through examples, this Technical Note covers modifying column properties of the
Data Grid with the new API calls. The examples will cover:

• Hiding and Displaying Columns
• Column Resizing
• Column Locking
• Inline Editing

The example consists of the following:

• 4D Database
• 4D Ajax Framework
• Custom HTML pages

In order to combine all of the above components, knowledge of 4D and Javascript is
required. In addition, it is recommended to use the Firebug add-on for Firefox to
help aid in Javascript development.

Referencing Columns

As the picture below shows, column number starts at 0 and not at 1. In other
words, the left most column reference is always 0. This is important to keep in
mind when using API calls that require a column number parameter.

 4

Example Database
--

The example database included with this document comes in three flavors:

• Interpreted Source Database for 4D 2004
• Interpreted Source Database for 4D v11 SQL
• Merged Database

The interpreted source databases allow you access to the methods used on the
backend. Otherwise, feel free to connect to the merged version of this database.

The majority of the coding that went into this example database is actually on the
web side of things. Specifically, the JavaScript code in the HTML files included with
the merged application.

Installing the 4D Ajax Framework Component

Before using the source database you will need to install the 4D Ajax Framework.
This product is part of the Web 2.0 Pack, which is subscription-based therefore we
cannot provide the component in the source database. Because of this, only Web
2.0 Pack subscribers will be able to fully utilize the source database. However you
can still use the merged application in order to try the examples.

Note: If you are a Web 2.0 Pack subscriber and would like to install the 4DAF, please

follow the instructions supplied with the Web 2.0 Pack.

 5

Hiding and Displaying Columns
--

The ability to either hide or display columns is a feature within the new version of
the 4D Ajax Framework. The section will provide information regarding the API calls
and suggest some practical uses.

Function: .hideColumn()

myGrid.hideColumn(colNum)

When executed, the above function hides a column in the Data Grid. The pieces
involved with the function are:

myGrid: The Data Grid object created with new dax_dataGrid().

hideColumn: The function that hides the column.

colNum: The reference number that corresponds to a column.

When hiding the columns, the reference numbers do not change even though their
positions may have when displayed on the page. For instance, below are four
columns:

From left to right, the reference numbers are 0,1,2,3. If the function is called to
hide column 2, the browser will display columns 0,1,3.

Thus, column 3 is now in the position that was once occupied by column 2, but
column 3 is still reference with 3 and not 2. Just because the position has changed
it does not mean that the column number will change as well.

 6

Function: .showColumn()

myGrid.showColumn(colNum)

When executed the above function displays a column that is hidden within the Data
Grid. The pieces involved with the function are:

myGrid: The Data Grid object created with new dax_dataGrid().

showColumn: The function that will execute and display the column.

colNum: The reference number that corresponds to a column.

The result of using this function is the exact opposite of hideColumn. When calling
this function, it is assumed that the column has already been hidden. When the
function is executed, the column will reappear in the browser. The columns will
always display in cardinal order from left to right.

Note: For both functions do not pass a column number that does not exist. Currently the

framework does not provide an error when referencing a column out of range.

Note: For both functions, they must be only used after the .go() function has already been

executed.

Note: The column properties, when hidden stay intact. For instance resizing the column,

hiding it, and then displaying it will still retain the previous size.

Possible Practical Use

These functions can be used to create a custom tailored grid for each user. Since
not every user needs to see the exact same View, these functions provide a means
to hide or display specific data for each user. For instance user A can only view
columns 1 and 3, while user B can view all the columns, these functions allow the
developer to deliver a solution that accommodates both users without needing to
create a whole new View for each user. The end result is that the developer delivers
what his users want with very little work and little time involved.

 7

Column Resizing
--

This section provides information regarding the API calls that deal with the sizing
properties of columns.

Function: .setColumnWidth()

myGrid.setColumnWidth(colNum, width)

When executed the above function resizes the column width to the specified width
value in pixels. The pieces involved with the function are:

myGrid: The Data Grid object created with new dax_dataGrid().

setColumnWidth: The function that will execute and set the column width.

colNum: The reference number that corresponds to a column.

Width: The number in pixels that specifies the width size of the column.

An important note when using this function is that it does not increase the object
size when displaying the text. For instance, view the screenshot below:

Trying to resize this through the interface or with the API call may still not display
all of the text. This is because the field object containing the text does not
automatically increase. Therefore in order to display more of the text to be seen,
the setColumnWidth() function along with the function querySetMaxChar() needs to
be used.

Note: It is suggested to not resize the right most column. By default, the Data Grid will try

to occupy any empty space.

Note: Disabling the resizing of the Data Grid does not affect this function.

 8

Function: .getColumnWidth ()

myGrid.getColumnWidth(colNum)

The above function returns the specified column width, in pixels. The pieces
involved with the function are:

myGrid: The Data Grid object created with new dax_dataGrid().

getColumnWidth: The function that will return the column width.

colNum: The reference number that corresponds to a column.

The getColumnWidth function provides the developer a means to obtain the current
size in pixels of a specific column. The column itself does not need to be visible in
order to obtain the column width.

Note: By default the column sizes are 150 pixels for text and 105 pixels for numeric.

Function: .allowColumnResize()

myGrid.allowColumnResize(allowColumnResize)

When executed the above function either permits or prevents the resizing of
columns. The pieces involved with the function are:

myGrid: The Data Grid object created with new dax_dataGrid().

allowColumnResize: The function that enables or disables column resizing.

allowColumnResize: The parameter is a boolean type and accepts either True or
False.

Passing True for the allowColumnResize parameter allows resizing of the column.
Therefore, the user can place the mouse cursor on a column splitter and be able to
increase or decrease the size of the column via the interface. On the other hand if
False is passed as the parameter, the user will not be able to modify the column
widths via click and drag of a column splitter.

Possible Practical Use

The ability to increase the width of columns can accommodate larger pieces of data.
In some cases where data within the grid can be quite large these functions can
help in displaying these varying sizes of data.

 9

Column Locking
--

This section provides information regarding the API calls that lock a column.

Function: .setRightLockedColumns()

myGrid.setRightLockedColumns(number of locked right columns);

The above function will lock the column on the right. The pieces involved with the
function are:

myGrid: The Data Grid object created with new dax_dataGrid().

setRightLockedColumns: The function that sets the number of right locked
columns.

number of locked right columns: This is the number of columns locked starting
from the right of the Data Grid.

The screen shot below displays the right column being locked. This function must
be called before the .go() function. In the screenshot, notice that the scroll bar is
only applied to the middle columns:

 10

Function: dax_dataGrid()

dax_dataGrid(selection, location, headerRows, lockedLeftColumns,
useControlColumn)

This function does several things. One of the properties it sets is the number of
locked left most columns.

Note: This function is a constructor and is not called with the same syntax as other

functions. (i.e. mygrid.function) This is because this function not only sets
properties, but it also creates the Data Grid. Therefore, it is called with the keyword
“new”. Example:

 myGrid = new dax_dataGrid(selection, location, headerRows,
lockedLeftColumns, useControlColumn)

lockedLeftColumns: The parameter specifying number of columns to lock.

For more information regarding the other parameters of this function please view
the Data Grid API reference.

The previous screen shot displays a Data Grid with 1 left column being locked.

Note: This function should be called before the .go() function.

Note: Do not lock more columns then you have displayed. For instance, if 4 columns are

displayed in the Data Grid, the maximum number of locked right and left columns
combined can only be 3 .

Possible Practical Use

Locking columns is another feature that helps the user work efficiently. With this
feature in place, a user can scroll horizontally and can view a specific column
constantly without the need to go back and forth. This small feature may appear
subtle, but it saves a user the need to constantly keep scrolling back and forth.

Inline Editing
--

A key feature within the Data Grid is Inline Editing. This feature allows the user to
modify the data within the list. Two functions are required to use this feature.

Function: .allowInlineEditing()

myGrid.allowInlineEditing(boolean)

This function will enable or disable the ability to edit a row within the Data Grid.

myGrid: The Data Grid object created with new dax_dataGrid().

boolean: The parameter is a boolean type. It accepts either True or False.

 11

When the function is executed the user is able to select a row and click on a field to
start editing, similar to the 4D feature, Enterable in List.

Function: dax_dataGrid()

dax_dataGrid(selection, location, headerRows, lockedLeftColumns,
useControlColumn)

As mentioned in the previous section this function does several things. One of the
properties it sets is the control column.

useControlColumn: Boolean parameter that accepts either True or False. True
will display the control column and False will hide the column.

When the function is executed, it will either enable or disable the control column.
Below is a screenshot with the control column enabled:

Possible Practical Use

These two functions work together to implement the Inline Editing feature. With
this feature in place, users have the option to either edit a record directly on the
row itself or within the Editor Sheet. When making a quick edit to a record, the
inline edit may work best.

 12

Using the Example Database
--

After launching the example database, the following splash screen appears:

Clicking on the Start button will open the following webpage:

The above screenshot is the home page. Each section has a quick description of
the feature as well as a link to another web page that will provide a demonstration
of how the feature is implemented. Each of the sections is explained below.

 13

Example: Hiding and Displaying Columns

At the home page, select the link “Example” in the Hiding and Displaying columns
section. The following web page appears:

How to Use the Example
The webpage displays four checkboxes. Checking a checkbox will hide a column
and unchecking the checkbox will display the column. For example, enabling
the checkbox “Hide Package ID” will hide the “Package ID” coumn:

 14

As the above screenshot displays, the first column “Package ID” is hidden.
Unchecking the “Hide Package ID” checkbox will display the column once again:

Implementation
In the example provided, checkbox objects were used to trigger the function
which executes .hideColumn(). Below is the HTML code for a single checkbox.

<input type="checkbox"text" name="hidecol1"
id="hidecolid1"style="width: 30px; height: 15px;margin-top:
10px;"onClick="hide($('hidecolid1'),0);"> </input>

The above code is called in four instances within the HTML page, which
corresponds to the amount of columns within the Data Grid. The important
piece in the above code is the onClick attribute which calls the hide() function
with two parameters.

onClick="hide($('hidecolid1'),0);"

With this attribute set, it means that when a user clicks on the checkbox object,
the function hide() will execute with the parameters $('hidecolid1') and “0”.
The value ‘hidecolid1’ is the id of the checkbox and “0” is the column being
referenced from the data grid. Below is the definition of the hide() function:

 function hide(check,col){
 if(check.checked){
 myDataGrid.hideColumn(col);
 }
 else{
 myDataGrid.showColumn(col);
 }
 }

The function first checks if the checkbox is either True or False. It is True if the
checkbox is checked and is False when unchecked. Therefore when checked,
the line of code executes:

myDataGrid.hideColumn(col);

 15

The variable col contains the value which was passed during the onclick event.

The .checked property may also be false in the situation where the checkbox is
unchecked. In this case, the else branch is executed:

myDataGrid.showColumn(col);

As mentioned in the “Hiding and Displaying Columns” section, this function will
display the column.

Example: Modifying Column Width

At the home page, select the link “Example” in the Modifying Column Width section.
The following web page appears:

How to Use the Example
To change the width of a column:

1. Select the column from the drop down list “Column to Resize”. Notice
that the “Current Column Width” field displays the width in pixels for the
selected column.

2. Enter the size in pixels for the column width within the field “Column
Width in Pixels”

3. Click on the set column width button. The Data Grid should reflect the
change.

To reset the Data Grid to the default state, click on the “Reset Grid” button.

 16

Implementation
When the page loads the following function runs:

function onAfterInit(){
myDataGrid = new dax_dataGrid('View_1', $('griddiv'),1,0,false);
 col=0;
 myDataGrid.go();
 $('colwidthdisplayid').value=myDataGrid.getColumnWidth(col);

$('columnwidthid').value=0;
}

The first line of code within the function is the call to create the grid. The second
line of execution will set the global variable col to the value of 0. The .go()
function then is called which displays the grid. The next line of code (pointed
with green arrow above) obtains the column width for column 0. The value is
saved into the input element with id 'colwidthdisplayid'. Lastly, the input
element with id ‘columnwidthid’ is initialized to 0.

Note: The expression “ $('colwidthdisplayid')” can also be written as:

 document.getElementById(‘colwidthdisplayid’)

After the above code has executed the page is now available to accept input.
The first thing a user will do is select a column from the drop down list. Below is
the HTML code for the drop down list:

<select
name='Columns'onchange='OnChange(this.form.Columns,this.form.colwidthdisplay)'
id="colresize">
<option value="0">Package ID</option>
<option value="1">Customer ID</option>
<option value="2">Package Status</option>
<option value="3">Package Contents</option>
</select>

As the code above shows, each option element has a unique value that ranges
from 0 to 3, which corresponds to the column reference numbers within the
Data Grid. In addition, this select element also calls the function OnChange(),
which is triggered by the onchange event. Thus, changing the value of the drop
down list on the web page will trigger this event which will then trigger the
function. The OnChange() function accepts two parameters; the name of the
select element (e.g.“Columns”) and the name of the input element (e.g.
“colwidthdisplay”). Below is the HTML code for the colwidthdisplay input
element.

<input type="text" disabled="disabled" id="colwidthdisplayid"
name="colwidthdisplay" style="width: 30px; height: 15px;margin-top:
10px;"> </input>

Even though this is an input element, no inputs will be accepted since the
“disabled” attribute is used. It will strictly be used to display the column width

 17

value. Earlier in this section, an explanation was provided of how this object
was initialized which gave it a value. Another way this object receives its value
is in the following function:

function OnChange(dropdown,coldis){
 var myindex = dropdown.selectedIndex;
 col = dropdown.options[myindex].value;
 coldis.value= myDataGrid.getColumnWidth(col)
 }

The first line obtains the index of the drop down list item chosen. The next line
then gets the value provided for the item which was provided in the select
element tag.

<option value="0">Package ID</option>
<option value="1">Customer ID</option>
<option value="2">Package Status</option>
<option value="3">Package Contents</option>

That value, which is the column number, is then saved into the col variable.
That variable can then be passed to the getColumnWidth()API function which
then will return the column width size value to the coldis.value which is
essentially the input element named ‘colwidthdisplay’. Now that a column
has been selected, a width value can be specified. The width value is stored in
the input element name “colwidth”.

<input type="text" name="colwidth" id="columnwidthid" style="width:
30px; height: 15px;margin-top: 10px;"> </input>

After the value is entered, the user can click on the button labeled named “Set
Column” which is the HTML input element name “SetCol”.

<input type="button" name="SetCol" value="Set Column" style="width:
90px; height: 20px;margin-top: 10px;"
onClick="setcolwidth(this.form.colwidth);"> </input>

This element has the onClick attribute which will call the function setcolwidth().
This function has one parameter, which is the value the user entered into the
colwidth input element. Below is the function definition for setcolwidth():

function setcolwidth(num){
 if(isInteger(num.value)){
 if((num.value<10) || (num.value>1000)){
 alert("Value needs to be more than 10 and less than 1000")
 }
 else{
 myDataGrid.setColumnWidth(col, num.value);
 $('colwidthdisplayid').value=myDataGrid.getColumnWidth(col);

dropdown.options[myindex].value

 18

 }
 }
}

The first line is a conditional statement that calls the isInteger() function which
returns a boolean. The isInteger() function will check to see if the characters
passed are integer values. If the values are not integers an alert will be
prompted and the function will return false. On the other hand if the values are
integers, the function returns true then the code goes onto another conditional
statement to check the range of values. If the value is either less than 10 or
more than 1000 an alert statement will be prompted asking the user to enter in
values in that range. Lastly, if the values are within range the else block
executes:

 myDataGrid.setColumnWidth(col, num.value);
 $('colwidthdisplayid').value=myDataGrid.getColumnWidth(col);

The first line sets the column width of the column specified by the variable col.
After this line of code executes, the Data Grid will instantly display the changes.
The second line of code then goes on to update the input element named
colwidthdisplay, which will display the recently modified column’s widths.

Example: Allow User Column Resizing

At the home page, select the link “Example” from the User Column Resizing section.
The following web page appears:

 19

How to Use the Example
When the page loads, the Data Grid is displayed. Now do the following:

1. Place the mouse cursor on a splitter.
2. Click and drag the splitter left to right. The column should be resizing.
3. Now click on the checkbox “Disable resizing”
4. Place the mouse cursor on a splitter.
5. Try to click and drag the splitter. The column now is static.

Implementation
By default, when the Data Grid is created, its columns can be resized by the
user. In order to disable that behavior the allowColumnResize() function is
called. In order to call that function the web page uses the input element
named rescheck with the attribute type = checkbox. Below is the HTML code:

<input type="checkbox"text" name="rescheck" id="rescheckid"
style="width: 30px; height: 15px;margin-top:
10px;"onClick="allowresize($('rescheckid'));"> </input>

The attribute onClick="allowresize($('rescheckid')) will call the javascript
function allowresize() when the user clicks on the check box. The input
element with the id rescheckid is passed into the allowresize() function.
Below is the function definition:

function allowresize(check){
 if(check.checked){
 myDataGrid.allowColumnResize(false);
 }
 else{
 myDataGrid.allowColumnResize(true);
 }
}

The first line within the function is a conditional branch to determine if the check
box is either checked or unchecked. The check.checked property will be True if
the input element passed into the function is checked. If True, the code will
execute:

myDataGrid.allowColumnResize(false);

After this function executes the Data Grid on the web page will reflect the
change and prevent users from resizing the column.

In contrast, if check.checked is False the code executed will be the following:

myDataGrid.allowColumnResize(true);

After the above code executes the Data Grid on the web page will reflect the
change and allow users to once again resize the column.

 20

Example: Locking Columns

At the home page, select the link “Example” in the Column Locking section. The
following web page appears:

How to Use the Example
The web page displays two input fields, to enter integer values. These two
values when added together should never exceed 3. For instance, If the
“Number of Right Columns to Lock” has the value 3 then “Number of Left
Columns to Lock” has to be 0. This is because there are 4 columns total. The
total number of locked columns should always be less than the total number of
columns (Left and Right locked columns < Total number of columns).

1. Enter an integer value for “Number of Right Columns to Lock”
2. Enter an integer value for “Number of Left Columns to Lock”
3. Click on the “Lock Grid Columns” button.

Below is a screenshot of 1 locked left column and 1 locked right column:

 21

Implementation
When the web page loads, no columns are locked. Below is the code that is
similar to all the examples provided.

function onAfterInit(){

myDataGrid = new dax_dataGrid('View_1', $('griddiv'),1,0,false);
 myDataGrid.go();

$('columnsright').value=0;
 $('columnsleft').value=0;
}

In the code above, the fourth parameter to dax_dataGrid() sets the number of
locked left columns to 0. After the page has loaded, the user is given the
opportunity to enter how many left or right locked columns. Below is the HTML
code for those two input elements.

<input type="text" name="colsr" id="columnsright" style="width: 30px;
height: 15px;margin-top: 10px;"> </input>

<input type="text" name="colsl" id="columnsleft" style="width: 30px;
height: 15px;margin-top: 10px;"> </input>

Once values are entered, the button “Lock Grid Columns” is clicked. Below is
the HTML code for the button:

<input type="button" name="reset" value="Lock Grid Columns"
style="width: 120px; height: 20px;margin-top: 10px;"
onClick="resetGrid(this.form.colsr,this.form.colsl);"> </input>

The onClick attribute calls the resetGrid() function which passes the
parameters this.form.colsr and this.form.colsl, which correspond to the
input elements holding the values entered by the user. Below is the function
definition where each the values will be used:

function resetGrid(colsr,colsl){
 if(isInteger(colsr.value) & isInteger(colsl.value)){
 var result=parseInt(colsr.value) + parseInt(colsl.value);
 if(result <4){
 myDataGrid = null;
 myDataGrid = new dax_dataGrid('View_1',
$('griddiv'),1,colsl.value,false);
 myDataGrid.setRightLockedColumns(colsr.value);
 myDataGrid.go();
 }
 else{
 alert("The number of combined locked columns must be less than
4. You are trying to lock "+result+" columns")
 }
 }
 else{
 alert("One or both values entered is not a number");
 }
}

 22

The first line is a conditional statement that checks if the data entered by the
user are actually integer values. If they are not, an alert message will be shown.
If the values are verified as integers, the values are added together and stored
in a variable. This variable is then used in another “if” statement to determine if
the value is less than 3. This is done to prevent locking more columns than
there are available. If the variable is more than 3 an alert message will be
shown asking the user to enter smaller values. If the value is 3 or less, the
myDataGrid object is set to null which deletes the Data Grid. After it is cleared,
a call to create a new Data Grid is made, but this time the fourth parameter
(lockedLeftColumns) is set to a value other than 0. This value is from the input
element colsl. The next line then sets the number of right locked columns,
myDataGrid.setRightLockedColumns(colsr.value). Lastly, myDataGrid.go() is
executed to display the newly created grid with the specified locked columns.

Example: Inline Editing

At the home page, select the link “Example” from the Inline Editing section. The
following web page appears:

 23

How to Use the Example
The webpage will display a Data Grid and a checkbox.

1. Check the “Inline Editing” checkbox.
2. A new column appears.

3. Select a column.

4. Edit a field.
5. Click on the check mark.

Implementation
In the example, the check box object receives input from the user to either
enable or disable the inline editing feature. Below is the HTML code for the
checkbox.

<input type="checkbox" name="contcol" id="contcolid" style="width:
30px; height: 15px;margin-top:
10px;"onClick="resetGrid($('contcolid'))"> </input>

The onClick attribute will trigger the function resetGrid(). The parameter
$('contcolid') is passed into the function. Below is the function definition:

 24

function resetGrid(check){
 myDataGrid.destroy();
 myDataGrid = new dax_dataGrid('Products',
$('griddiv'),1,0,check.checked);
 myDataGrid.allowInlineEditing(check.checked);
 myDataGrid.go();
}

The first line of code will delete the Data Grid. Once deleted, the next line
creates a new Data Grid. In the dax_dataGrid() call the last parameter
determines if the control column will be enabled or disabled. The parameter
passed is check.checked, which is True if the checkbox is checked, otherwise it
is False. Once the control column is added, the Data Grid can be given the
property to be editable. This is done with the next line of code:

myDataGrid.allowInlineEditing(check.checked);

This function also accepts a boolean type parameter thus is given the
check.checked parameter as well. Lastly, the function myDataGrid.go() is
called and the newly built Data Grid is displayed with the inline edit feature
available and ready for use.

Conclusion
--

Through the use of examples this Technical Note described how to implement and
use the following new column properties of the Data Grid:

• Hiding and Displaying Columns
• Column Resizing
• Column Locking
• Inline Editing

With these new features, developers can create dynamic rich web applications with
ease.

 25

A Note about 4D Web 2.0 Pack
--
The products in 4D Web 2.0 Pack are a departure from most other 4D products. As
4D Web 2.0 pack is a subscription-based product it is expected that incremental
releases will be made. Thus please note that this Technical Note is based on 4D
Ajax Framework v11 Release 1 (11.1). As new features are implemented this
Technical Note may become obsolete (faster than most other 4D products).

Related Resources
--

4D Ajax Framework Data Grid 2.0:
http://www.daxipedia.com/index.php/Data_Grid_2.0

For the latest information on the 4DAF consult the latest documentation:
http://www.4d.com/support/documentation.html

Also check the 4D Web 2.0 Pack Wiki:
http://daxipedia.4d.com

For the latest news about 4D Web 2.0 Pack or to find out how to purchase it see:
http://www.4d.com/products/4dweb20pack.html

