Upgrades with User Created Tables
By Thomas Fitch, Technical Support Engineer, 4D Inc.

Technical Note 02-08

Abstract

This Technical Note prepares developers for creating a 4D application which allows
end users to create their own tables. It includes two sample databases. One
represents the current version of a database, just finished by the developer. The
other represents the end user’s version of the same database, which the developer
would like to upgrade to the new version. Because the end user has added some
user created tables to the database the upgrade process is more complicated than
if he or she did not have that option.

Introduction

There are three main parts of the Technical Note. First is a description of the
process for developing and updating a database that allows end users access to the
database structure. The second part is a short description of the sample database
for use as the end user, similar to a user manual. Finally there is a scenario of what
the end user would have to go through to update to the latest version of the
database. The design of the sample database is explored in this third part.

Included with the Technical Note are two sample databases. Although these
databases are very simple in what they allow end users to do with their user
created tables, the ideas can be ported to more complex applications.

The first database, in the “"End User” folder, represents a database that has been
edited by the end user and contains tables created by the end user. This will be
referred to as the end user database or end user version throughout this
Technical Note.

The second database is in the “"Developer” folder and has an updated version of the
database with a table added by the developer. It is this database that the developer
needs the end user to upgrade to. This database will be referred to as the current
database or current version throughout this Technical Note.

In the Extras folder of both databases is one document: structure_log.xml. This file
tracks changes the user makes to the structure.

Planning to Implement User Created Tables

When developing a database and planning to offer the end user the ability to create
tables and edit the database structure there are a few things the developer must
decide. Here are some issues to consider:

* What options to offer the end user? Will they only be able to create tables?
Will they be able to change the structure of the table, delete fields and
change the data type stored in a field? Will they be able to delete tables? Will
they be able to add indexes to fields or relations between fields and tables?

* How will end users enter data into user created tables?

* How will data be displayed for user created fields?

These first few points are outside of the context of this Technical Note. Each of
these questions should be addressed before moving to the other design stages
though.

Once those decisions have been made the developer can move onto the question of
how to handle updating a database if they allow end users to create tables. Here
are some questions to address:

* How to track user changes to the database structure?

* How to test the database to see if the structure needs to be updated to
match user changes?

* How to update the latest version of the structure to include user changes?

* How to handle the data in user created tables when upgrading the structure?

Tracking User Changes

Whenever a user makes a change to the structure of a database it must be tracked
so that when the developer distributes a new version of the structure the end user’s
changes can be integrated into it. The complexity of the tracking system depends
on how much structure information the end user can modify. If all they are allowed
to do is create new tables then the system can be as simple as recording those user
added tables to a file. As the utilities grow more complex, more information must
be tracked. For example, if the user is allowed to create relations, each relation
must be tracked as well, and if they are allowed to delete tables that must be
implemented in the tracking system.

One way to track structure changes is with and external file. Any type of file that
can be written to and read and parsed when necessary can work. Other possible
options include running both databases simultaneously and querying and comparing
the SQL System Tables or tracking the changes in the database in a table desighed
to store that information.

Testing for User Changes

Once a tracking system is set up the data stored must be tested. It can be tested
every time the database is opened to ensure that the structure of the database is
correct. This testing can be done simply by parsing the tracking document and
comparing it to the actual database structure.

Databases that offer end users more options would have to have a more complex
testing system. A new feature in 4D v11 SQL is the access to SQL System Tables.

There are six system tables which used together can return the necessary data to
test the tracking document against. The system tables can be accessed via SQL
statements. The tables available are as follows:

e _USER_TABLES: This table contains data about the tables in a database,
including table number and name.

e _USER_COLUMNS: This table contains data about the fields in a database,
including what table it is from, its name, number, and data type.

e _USER_INDEXES: This table contains data about the indexes in a database,
including a reference number for the index, what table it is in, and what type
of index it is.

e _USER_IND_COLUMS: This table contains more data about the indexes in a
database and includes the reference humber, so it can be matched to data
retrieved from the _USER_INDEXES table. It includes information about the
indexed field.

e _USER_CONSTRAINTS: This table contains data about the relations in a
database, including a reference number for the relation, the type, what table
it is in and what table it relates to.

e _USER_CONS_COLUMNS: This table contains more data about the relations
in a table and includes the reference humber, so it can be matched to data
retrieved from the _USER_CONSTRAINTS table. It includes information about
the related fields.

For more information on SQL System Tables see the "SQL Reference” document,
which can be downloaded from the 4D website:

http://www.4d.com/support/documentation.html

The information is under the “Principles for Integrating 4D and the 4D SQL Engine”
heading.

Importing and Exporting User Created Data

When opening a data file, if the structure file does not contain the same tables as
the data file, the data in non-corresponding tables is lost. To prevent this, data
from user created tables must be exported by the user before updating to the new
structure. Then, once the new structure has been updated to include the user
created tables, the data can be imported back into the data file and the database is
ready to use again.

Integrating User Changes

When the structure is tested and discrepancies are found the database must be
updated to include user created tables. The changes that must be made can be
found in the tracking document or tracking table depending on what tracking
method was used.

The process of integrating the user’s changes can be summarized as follows:

Create a back up of the end user database.

Export all user-created data from the end user database.

Upgrade the structure to the current version.

Integrate the structure changes/user created tables into the new structure.
Import the user-created data.

uhwhe

Note that the choice of tracking system, technique used for import/export, etc. has
little bearing on this process. This process should be adhered to regardless of the
design specifics.

This process should only trigger when a new version of the structure is distributed

by the developer. In other words there is no need to perform these steps every
time the database is launched.

The Sample Databases

In order to run through the update process described later in the document, it is a
good idea to save a copy of this database as downloaded with the Technical Note.
Open either the end user version of the database or the current version to explore.
The only difference between the two versions is the database structure; some
different tables and fields have been added to each version.

User Created Tables

The option for end users to create tables is a 4D v11 SQL feature used by
implementing SQL commands in 4D. This is done using the SQL command CREATE
TABLE.

In the end user database choose the New Table menu item from the Database
menu to create new tables, as shown below:

: -ﬂni[) Developer
File Edit MndelDatahase Help

Album Table
Songs Table
Mew Table
Create Record
Export Data

This opens the New Table form, as shown here:

=101 x|
Create A Table

Table Mame: I

Murnber of Fields: |]

Field Mames | Data Type [«

Create new table ‘

In this form the end user can enter the table name and the number of fields they
want in the table. Once those have been entered the list box for Field Names and
Data Types is populated with blank values, allowing the user to enter the desired
fields. This application supports Text, Int, Boolean, and Real fields, as shown in a

drop down menu for each field the user would like to enter. An example is shown
below:

CEE o]
Create A Table

Tahle Mame: [Test_Table
Murnber of Fislds: 4

Field Marnes Data Type |~
TextField TEXT -
BooleanFisld BOCLEAM -
IntField INT hd
RealField| -

Create new table

Once the table and field data is entered the user can create the new table with the
button at the bottom of the form. A warning is displayed giving the user the option
to cancel and change their table and field data before continuing. This is important
because all the information contained herein must be valid or else the code to
create a new table will not work. The table name cannot contain certain characters
(such as spaces) and the field names are limited as well (e.g. names such as “"Text”
are disallowed because Text is a reserved word).

Creating a New Table
The Create new table button has two main functions.

As mentioned previously SQL commands are used to create a new table. The
portion of the “Create new table” button object method regarding this is included
below (variable names have been shortened to avoid breaking one line of code onto
multiple lines in this document):

C_TEXT ($Scrtbl)
$Scrtbl:="CREATE TABLE IF NOT EXISTS "+Table+" ("+Field{1l}+" "+DataType{l}
For (Scount;2;Fields)

Scrtbl:=$crtbl +","+Field{S$Scount}+""+DataType{Scount}
End for
Scrtbl:=$crtbl+");"

ON ERR CALL("sgl err handler")

Begin SQL

EXECUTE IMMEDIATE :S$crtbl;
End SQL
ON ERR CALL("")

Since the end user is allowed to name the table and fields, the SQL code to create
the table becomes a dynamic statement. EXECUTE IMMEDIATE is used to run this
statement, with different table names inserted based on the variables specified in
the $crtbl text variable. This allows the developer to input 4D variables into the SQL
code, which is not possible between the BEGIN SQL and END SQL commands
otherwise.

Because of this a text variable is set up to store the SQL statement to create the
new table. It is made using the table, fields, and data types as defined by the user
on the form. This is used with the SQL command CREATE TABLE to create the new
table. The SQL clause “IF NOT EXISTS"” is used to the user from creating multiple
tables with the same name.

Once the text variable ($crtbl) is set up it can be passed into the SQL command
EXECUTE IMMEDIATE to create the table. The ON ERR CALL command is used to
trap errors and warn the user if they have used an illegal table name, field name,
or data type.

Logging the New Table

As a developer it is important to track new tables created by the end user so that
when a new version of the database is distributed the user created tables can be
added to that new version as well. In the sample databases the tracking is done in
an XML document where each new table’s structure is stored (the structure_log.xml
file in the database’s Extras folder). The code can be found in the databases under
the Update_XML method. This is only one way to track the changes to a database’s
structure, and thus only the general logic of it will be discussed in this Technical
Note. There are numerous other means of tracking user added tables, and the
decision of how to do it is up to the developer.

In this case each table is stored as a separate XML element and each field in a table
is a child element of the table element. The field data types are stored as the value
of each field element.

The sample databases only support users creating new tables, and thus that is the
only function which this logging code implements. In other situations it would also
be necessary as a developer to log table deletions or changes to table structures if
these functions are available to the end user.

Note If you want to add the ability to delete tables you must also delete the elements
created in structure_log.xml. If you do not every time the database is opened it will
check that document as part of the On startup code and recreate those tables.

More information on the DOM XML commands used in the Update_XML method can
be found in the 4D online documentation at:

http://www.4d.com/docs/V6U/V6U00066.HTM

Entering and Displaying Data

User created tables bring up another issue for developers in how to display and
enter data into those tables. In the sample databases only the entering of data into
these tables is handled, but it can be used as a blueprint for how to display it as
well. This is a very simple data entry form and the more complicated options that
are offered to end users, the more complicated the entry and display of data would
be.

To enter data into a user created table the end user selects Create Record from the
Database menu, as shown below:

: ﬁMyMusic - 4D Developer
File Edit Mode | Database Help

alburn Table
Songs Table
Mew Table

Create Recard

Expart Data

This brings up the Add a Record form, as shown here:

D] 5
Add A Record

Table Mamne: I Records in Table: | 0

Field Mames | Data Type | Data | =]

Save Record

To add a record the user must input the table name in the first field. This triggers
the On data change form event in that object’s method. First the text is checked
against the table list to ensure that it is a valid table for the database. If so, then
the Records in Table field is updated for the total number of records in that table
and the list box is updated to show each field name and data type for that table. At
this point the user can input the data. Carry on from the previous example, the
form would appear as follows when they tab out of the Table Name field:

Add A Record
Tahle Marme: [Test_Tahle Records in Table: | 1
Field Marnes | Data Type | Data |~
TextField TEXT h
IntField IMT M
BoolFieid BOOL -
RealField REAL -

4 o

Save Record

Once the data is entered the Save Record button can create a new record. Since
the Data column of the list box stores a text array True or False must be entered
for Boolean values and then parsed. Similarly any integers or real number values
must be changed from text to the desired type before saving the record. The object
method for the Save Record button does all of this. It also resets the list box and
Records in Table process variables so another new record can be entered.

A similar list box form could be used as an output form for user created tables, as

list boxes can be created dynamically in code to match the needs of each table the
user creates.

Database Update Scenario

There are three main parts of updating the database. Part one is to export data
from user created tables. This must be done before the user opens the new
structure. Part two is to read the structure information from wherever the
developer chose to store it, in this case structure_log.xml, and use that to create
new tables in the updated structure. Part three is to import the data from these
user created tables back into the database.

Sample Update

Here is a sample update to run before going through the three parts of updating a
database in detail. These instructions are similar to those a developer would pass to
the end user.

1. Create a backup of the end user database.

2. Open the end user version of the database with its current data file. Once in
the database go to the Database menu and choose Export. This will export
the data.

. Quit out of the End User version of the database.

. Go to the "Developer” folder and copy the .4db and .4Dindy files. Paste these
into the End User database folder. This will overwrite the user structure files.

5. Open the updated database. Choose the corresponding data file when

prompted to by 4D, if necessary. The structure will be updated with user
created tables and the data from those tables will be imported automatically.

AW

That five step process is all that is necessary to update to a new version of the
database.

Note: In this example the database is “upgraded” by simply copying the new structure file
over the old one. This is a somewhat contrived example of how to perform an
upgrade. Certainly a more advanced/fail-safe process could be used (i.e. an installer)
but the concept is unchanged by these details.

To test that the upgrade was performed correctly:
* The tables created were “Test_Table_1" and “Test_Table_2". These may be
used in the “Add a Record” form to ensure they were created
* The correct number of records, 2 for Test_Table_1, and 3 for Test_Table_2
should also exist.

Exporting Data

How data import and export is done is ultimately the developer’s decision. There
are many options available. Here is a partial list:

e XML files
e Text files
e 4D format

e SEND RECORD and RECEIVE RECORD commands
e SOAP commands

In the sample database the SEND RECORD and RECEIVE RECORD commands are
used. The code can be found in the sample database in the “Export” method.

The most important issue to note is that the developer must make their end user
export data before updating their database structure to the newest version. When

opening the End User version of the data file with the updated structure all data
from user created tables will be lost. This means that if the user did not export their
data and does not have a backup file all of that data will be permanently lost.

On a similar note this is why it is important that end users follow the first step and
backup the database before updating to a new version from the developer.

Updating the Structure

This process is similar to that of creating new tables when the end user inputs the
data, but instead the structure is read from the tracking system the developer
implemented in his or her database. In the sample database the structure_log.xml
file is used.

All the code for this can be found in the “On startup” method for the sample
database and the methods it calls as sub-routines. Every time the database is
started a Boolean interprocess variable, <>upgrade_flag, is set to false. Then the
“"Check_XML"” method is called. This method compares the structure of the database
to the structure in the XML tracking file and updates it as needed. We will go
through some of the code in that method here.

To start, an array of table names and numbers is created. This code is repeated
often throughout the database, as it is commonly useful to check to see if a table
name read in from an external source or input by the end user is valid or already
exists in the database. Here is that code:

For (Sthetable;1;Get last table number)
If (Is table number valid($thetable))
APPEND TO ARRAY (Stable array;Table name (Sthetable))
Else
APPEND TO ARRAY (Stable array;"")
End if
End for

This code is simply gets the table name for each table number and stores table
names sequentially in an array. This is so that later in the process the array can be
searched for a specific table name, and the name’s position in the array
corresponds with that table’s number in the database.

The next part of the code deals with reading the XML file to find table names and
table structures. This part will be different depending on how the developer chose
to track user created tables. It is important that, as each table is read in, it is
tested against the array of table names that was created. The code that checks this
is run every time the database starts, so all the table creation code hinges on
whether or not the table name was found in the array. If the table described in the
tracking mechanism is not already in the database, then a new table is created.

The table creation code is as follows (once again variable names have been
shortened to keep single lines of code from breaking into multiple lines in this
document):

Scrtbl:="CREATE TABLE IF NOT EXISTS "+Stable+" ("+$field{1l}+" "+Sdata{l}
For (Scount;2;Size of array($field))

Scrtbl:= Scrtbl+", "+$field{Scount}+" "+$Sdata{Scount}
End for
Scrtbl:= Scrtbl+");"
Begin SQL
EXECUTE IMMEDIATE :S$crtbl;
End SQL

<>upgrade flag:=True
CLEAR VARIABLE ($field)
CLEAR VARIABLE ($data)

The SQL code here is fully described in the previous section of this Technical Note,
“Creating New Table”. The main difference is that the arrays that the field names
and data types are stored in are created as they are parsed from the
structure_log.xml file. The table creation code is run as the XML file is parsed, after
each table’s structure information has been stored in the arrays, so each array is
cleared after the table is created. This way the method can continue parsing the
XML file and add another table if there are multiple user created tables.

Also note that the “"<>upgrade_flag” variable is set to True if a new table is
created. Setting this flag triggers the next part of the code from the On startup

database method; if <>upgrade_flag was set to true, then the “Import” method is
called to import data.

Importing Data

Exported data is automatically imported at startup in the example database.
The intricacies of importing and exporting data are not within the scope of this
document. How to import and export data is a decision to be made by the

developer.

In the sample database SEND RECORD and RECEIVE RECORD are used and the
import procedure can be found in the Import method.

Conclusion

This Technical Note went through a process a developer could use to upgrade a
database that allows end users to create tables. How the upgrade process is
designed will be dependent on the development of the database, and thus it must
be planned from the start. It is important to take into account many different
ramifications when allowing users this kind of freedom, but since all the user utility
must be implemented by the developer each developer will know what issues must
be handled for a particular application.

