Hierarchical Lists in 4D v11 SQL

By Thomas Fitch, Technical Support Engineer, 4D Inc.

Technical Note 07-39

Abstract

Hierarchical Lists have been dramatically improved in 4D v11 SQL. This Technical
Note explores the changes made and demonstrates how to use the new features of
Hierarchical Lists.

In this document there are references to different pages of the sample database. To

navigate in the sample database between pages use the “Goto Previous Page” and
“Goto Next Page” buttons on the display form.

Updated Commands and Implementations

This section discusses commands that have been updated for 4D v11 SQL and
explanations and examples of the updates. It also includes general implementations
to the Hierarchical List topic as a whole.

Multiple Form Objects and Commands Affected

In earlier versions of 4D Hierarchical Lists each had a list reference ID. This allowed
developers to reference the list as a language object and had object names which
allowed the list to be referenced as a form object. The problem with this was that
each language object could only be displayed as one form object, so if a developer
wanted to display the same Hierarchical List multiple times (on the same or
different forms) they had to rebuild the list each time and store an instance of it in
memory.

With 4D v11 SQL both of those methods of referencing a Hierarchical List remain,
but now the same language object can be tied to multiple different form objects.
This allows one list to be built and displayed in different positions and on different
forms via separate form objects. Many of the characteristics of these separate form
objects stay the same from list to list, but a few of them can be unique for each
separate list:

* The currently selected items of the list.
* The expanded and collapsed states of items in the list.
* The position of the scrolling cursor in the list.

This new function of the form objects of Hierarchical Lists calls for an update to the
syntax of many commands. When a developer wants to reference a specific form
object, rather than all form objects related to a list ID, there needs to be a way to
pass that object as a parameter. To do this a new optional parameter has been
added to many commands.

Commands which used to look like this:

COMMAND (listrefID; parameter; parameter)

Can now be written this way instead:

COMMAND (*; "objectname”; parameter;, parameter)
Commands which use this new parameter include:

SET LIST ITEM

GET LIST ITEM

DELETE FROM LIST (changed from DELETE LIST ITEM)
SELECT LIST ITEMS BY POSITION

Count list items

Selected list items

INSERT IN LIST (changed from INSERT LIST ITEM)

List item parent

List item position

SET LIST ITEM PROPERTIES

GET LIST ITEM PROPERTIES

SET LIST ITEM FONT (new command for 4D v11 SQL)

Get list item font (new command for 4D v11 SQL)

Find in list (new command for 4D v11 SQL)

SET LIST ITEM ICON (new command for 4D v11 SQL)

GET LIST ITEM ICON (new command for 4D v11 SQL)

SET LIST ITEM PARAMETER (new command for 4D v11 SQL)
GET LIST ITEM PARAMETER (new command for 4D v11 SQL)

Note The commands DELETE LIST ITEM and INSERT LIST ITEM have been changed to
DELETE FROM LIST and INSERT IN LIST. When upgrading a database to 4D v11
SQL this change will be made automatically during the upgrade process.

The previous means of referencing the language object via the list reference ID is
still accepted and will commonly be used when not referring to a specific form
object, but rather the list in general.

Using one of these commands with the new reference parameter may seem to
imply that only that form object’s properties are changing, but it is important to
recall that only the previously mentioned properties are unique per form object.
Other properties that are changed for one form object of a Hierarchical List are
changed for all form objects tied to the same language object. For example calling
SET LIST ITEM FONT for one form object could change all representations of that
Hierarchical List.

This new means of referencing object by their object name on forms also allows
Hierarchical List objects to be referenced with a wildcard character. For example
calling SELECT LIST ITEMS BY POSITION and using the object name as

reference one could use "HL@"” and set a new selected list item for all form objects
starting with HL. When using the wildcard character with commands that get values
(such as GET LIST ITEM or Find in list) the first form object whose name
corresponds is used.

The sample database is full of uses of these new commands. The demo has two
form objects of the same Hierarchical List that can have different selections and
different expanded and collapsed list items throughout. Here is one such example:

o o} S
MFL Team Comparisons Page 1
— < == =]
IS4 Tampa Bay Buccaneers M; ? fc:'g_ e
iR
E Offensive Statistics E Offensive Statistics J
E Defersive Statistics E Defensive Statistics
¥ Roster » Roster
. —_]
& Adams; Gaines S % Seattle Seahawks
- x| | — jhd|

Note Using some of these new commands (such as SET LIST ITEM FONT) can override
properties set in the Property List in design mode or that was set using a command
from the Object Properties theme. Using a command from the Hierarchical List
theme takes precedence over all other means of setting these properties. Once one
of these commands has been used to set a property all other means of setting the
property fail. The Hierarchical List commands have the highest precedence and
cannot be overridden.

Commands FONT, FONT STYLE, and FONT SIZE

These general 4D object commands now also work on Hierarchical List objects.
They can be called in both ways outlined in the previous section. Using the optional
form object name reference a specific representation of a Hierarchical List object
can be made to appear differently from other representations of the same
Hierarchical List.

This is an effect that cannot be achieved with the Hierarchical List commands and is
thus very useful. It is important to remember though that, as noted above,
Hierarchical List commands have precedence. A form object that has been adjusted
using one of the Hierarchical List commands (such as SET LIST ITEM FONT)
would not be affected when changing the same aspect of its display with object
commands.

There are examples of these commands on page 2 of the demo in the sample
database to change font properties via buttons.

Command SET SCROLLBAR VISIBLE

This command can now be used to set the visibility of the scrollbar for Hierarchical
List form objects. It can be called using the list reference ID or the form object
name as previously discussed.

To test this command in the sample database go to page 1 of the demo and use the
“Scrollbars on” and “Scrollbars off” buttons to show examples.

Command SCROLL LINES

This command can now be used to scroll and change the current selection of a
Hierarchical List form object. This command can be used with the list reference ID
or the form object name, but when using multiple displays of the same list it is
usually a good idea to use the form object name and only reference one of the
displays. This is because using the position parameter of this command to scroll to
a line number only accounts for expanded list items. This means that if one of the
lists being referenced has different list items expanded, passing the same value into
SCROLL LINES can select a different line for each list.

To test this command in the sample database go to page 1 of the demo and use the
different selection and scrolling buttons to show examples.

Command REDRAW LIST
Hierarchical Lists are now redrawn automatically when necessary. The REDRAW

LIST command no longer has any effect. When upgrading an older database to 4D
v11l SQL this command will not be removed, but it does nothing when called now.

New Commands

In this section new commands that have been added to the Hierarchical List theme
will be discussed with examples and explanations.

Commands SET LIST ITEM FONT and Get list item font
SET LIST ITEM FONT ({*; }list; itemRef | *; font)

Get list item font ({*; }/ist; ItemRef | *) = String

Parameter | Type Description

* * If omitted (default): use list reference ID for list
parameter
If specified: use list object name for list
parameter

list ListRef (Longint) | Name of the list form object if * specified

| String List reference ID number if * omitted

itemRef or * | Longint | * Item reference number or 0 for the last item
added or * for the current item of the list

font String | Num Font name or number, return value for Get list
item font is always font name

These commands get and set the font of a single item in the Hierarchical List. This
command does not affect only a single representation of the list, but rather all
representations (form objects) of a language object. For this reason it is important
to be careful when using the * parameter to reference which list item to set or get
the font of. This is because using that parameter means that the developer also
needs to use the object name to reference the list if there are multiple
representations of the same list. Otherwise 4D will not know which representation’s
selection of items to use for this command.

It is also good to note that this is an example of one of the commands that
overrides object property commands and the Property List in Design Mode. Any
changes made with the SET LIST ITEM FONT command cannot be changed via
those other methods.

With the SET LIST ITEM FONT command passing an empty string as the font
name resets the font to default for the Hierarchical List.

Examples of this command can be seen on page 2 of the demo in the sample
database.

Command Find in list

Find in list ({*; }list; value; scope{; itemsArray}{; *}) = Longint

Parameter | Type Description

* * If omitted (default): use list reference ID for list
parameter
If specified: use list object name for list
parameter

list ListRef (Longint) | Name of the list form object if * specified

| String List reference ID number if * omitted

value String Value to be searched for

scope Integer If 0: search the main list
If 1: search the sublist

itemsArray Longint Array If 2nd * omitted: array of positions of items
found
If 2nd * specified: array of reference numbers of
items found

* * If omitted (default): use position of items
If specified: use reference numbers of items

Function Longint If 2nd * omitted (default): position of item found

result If 2nd * specified: reference number of item
found

This command returns the position or reference number of the first item found to
match the value passed into the method and can also fill an array with the
corresponding numbers of all matching list items.

The search done is exact, such that the String passed as the value to search for
must exactly match a value in the list. For example, from the sample database,
searching for “"Oak” would not find “"Oakland Raiders”. However this search does
support the wildcard character, so in code a developer could add the @ symbol to
the end of any searches to change this behavior.

All searches done include a search of the main list passed, but by passing 1 as the
scope value sublists can be included in the search.

The Find in list command is one of the most likely to be used on multiple
representations of the same list. An example of this is given in the sample database
on page 3 of the demo. Also, code for the Find in list command can be found in
the sample database in the object methods of the two text variables on that page.

Commands SET LIST ITEM ICON and GET LIST ITEM ICON
SET LIST ITEM ICON ({*; }list; itemRef | *; icon)

GET LIST ITEM ICON ({*;}list; itemRef | *; icon)

Parameter | Type Description
b 3

* If omitted (default): use list reference ID for list
parameter

If specified: use list object name for list
parameter

list ListRef (Longint) | Name of the list form object if * specified
| String List reference ID number if * omitted

itemRef or * | Longint | * Item reference number or 0 for the last item
added or * for the current item of the list

icon Picture Icon to be associated with the item (for SET
LIST ITEM ICON) or icon currently associated
with the item (for GET LIST ITEM ICON)

These commands get and set the icon of a single item in the Hierarchical List. They
expand on the uses of SET LIST ITEM PROPERTIES which can also set an icon for
list items by allowing the developer to pass non-static picture references to the
command use them for their list. The icon parameter can be a valid 4D picture
expression (field, variable, pointer, etc) but it is suggested to use pointers. This
way building a list that uses the same picture over and over would not use as much
memory.

The LIST ITEM ICON commands are more commands for which it is important to
be careful when passing a 0 as the itemRef parameter. This is explained above
under SET LIST ITEM FONT and Get list item font commands.

Sample code for the SET LIST ITEM ICON commands can be found in the sample
database on the form method of the “HL_display” project form where the
Hierarchical Lists are created.

Here is an example taken from that method:

READ PICTURE FILE (Get 4D folder (Extras Folder)+[Teams]Abbr+“.gif”;S$icon)
APPEND TO LIST (<>HL levell;$teamname;S$id;S$sublist;False)
SET LIST ITEM ICON (<>HL levell;O0;Sicon)

Commands SET LIST ITEM PARAMETER and GET LIST ITEM
PARAMETER

SET LIST ITEM PARAMTER ({*; }list; itemRef | *; selector; value)

GET LIST ITEM PARAMTER ({*; }list; itemRef | *; selector; value)

Parameter | Type Description
* * If omitted (default): use list reference ID for list
parameter
If specified: use list object name for list
parameter
list ListRef (Longint) | Name of the list form object if * specified
| String List reference ID number if * omitted
itemRef or * | Longint | * Item reference number or 0 for the last item
added or * for the current item of the list
selector String Parameter constant
value String | Boolean | Value of the parameter
| Number

These commands get and set the value of different parameters based on what is
passed into the command as the selector.

These are basically developer designed parameters (with one exception) and can be
used to store any data of type Text, Number or Boolean. The SET LIST ITEM
PARAMETER command creates a parameter of the name passed in selector (if that
selector is being used for the first time) or references a parameter that can have
been created by calling the command previously. The type of value passed into the
value parameter describes what data type will be stored here for all list items using
this parameter name. The GET LIST ITEM PARAMETER command works similarly,
but instead returns the value previously passed using the set command. These
commands are powerful because they allow the developer to store many different
types of information beyond simply having the text associated with a list item with
it.

The exception to the parameters being developer defined is the constant Additional
text. The type for values to be passed and retrieved from Additional text are Alpha
and anything stored in this parameter is displayed on the right in the Hierarchical
List when the item it refers to is selected as the current item of the list.

Command LIST OF CHOICE LISTS

LIST OF CHOICE LISTS (numsArray; namesArray)

Parameter | Type Description
numsArray Longint Array Numbers of choice lists
namesArray | Text Array Names of choice lists

This command returns two arrays, one an array of the numbers of all choice lists
defined by the list editor in Design mode and the other the name. The numbers
correspond to the lists’ order of creation.

Conclusion

This Technical Note offers a summary of the updated functionality of Hierarchical
Lists in 4D v11 SQL. Included is a sample database with many examples of the
code needed to implement these new commands and functions in existing or new
databases to display different types of data.

