
Custom List Manager

By Larry Sharpe

Technical Note 07-23

Abstract
--

This Technical Note presents a technique for building customized lists. This
technique combines 4D’s existing list functionality with a customized system in
order to provide features not available when using 4D’s hierarchical lists.

A sample database is provided.

Overview
--

One of the needs of most 4D databases is having lists, a way to have your database
users pick an item from a list of items in order to populate a field. There are several
potential issues when using 4D's method of lists. The user is only allowed to pick
one list item at a time and 4D does not allow for easily modifying the user interface
to make it match the rest of your database’s look and feel. Perhaps the biggest
problem with using the standard 4D Lists is that when you update your structure
(and you will) any lists updated by the users will be lost. This is because the list
data is stored in the structure not the data file.

To deal with these problems we will store the list information in the data file and
add code to manage the user interface functionality. This Technical Note adds one
table to your database, one Project Method (PM) and slight changes to your forms
to manage each list that you define in a much cleaner way.

Another large part of this Technical Note is how to use these new lists functions as
a keywords addition to your database. I have found that almost every database has
a need for storing keywords that are related to a parent record. Using this code you
can have a way for the users to manage the list of user-defined keywords that they
can pick from without having to type it in each time. There can be zero, one or
multiple keywords attached to each parent record. With this slightly more involved
addition of the lists capabilities, you will need another form and a PM to handle the
keywords.

There was a Technical Note published by Steve Hussey back in November, 2000
that shows a way to manage lists. Since it has been a few years since that
Technical Note and it was written for 4D v6.0, this Technical Note will be a
redesigned version of that idea. This new Technical Note shows how the list
functions can be redesigned to allow only one list item selection at a time, i.e. a
popup list of cities; used to verify that the entered data is part of a valid list, i.e. a
valid state; or used to allow picking many list items at a time, i.e. a list of keywords
attached to a person's record.

Demo Database Implementation
--

This section discusses the implementation presented in the sample database.

The Table and Fields

You will need to add the [xLists] table and its fields. I have added the "x" to the
table name so that it sorts to the bottom of the list of tables in the structure. I use
this for the table names and the PMs so that commonly used code is separated from
the client specific code. I find it is much easier to maintain code using this naming
convention.

In the [xLists] table there are three fields, ListName (A30), SortOrder (L) and
Element (A80). Each record is an element of a specific list and is set to a specific
sort order in that list. Repeating the list name for each element may seem
redundant but is much simpler than having two tables, one for the list names and a
related table for the elements that belong to those lists.

The Form

The main form used to maintain the lists is named "ListEditor". This form allows the
user to add elements to each of the lists that the developer has created. The users
are not allowed to create lists, only the elements for the existing lists. The list of
lists is actually stored as a 4D hierarchical list with the name "ListNames". Adding
an element to this master list will make it show up in the ListEditor form. Most of
the objects in this form have code in them which keeps track of which specific list
you are working with and if you are adding, modifying, moving or deleting elements
to that list. The good news is that it will work with all of your lists with no changes.

The PM

The method "xLists" has all the code needed to maintain your list data. This PM is
used to edit the lists (using the table, fields and form described above), save the
changes to any list being edited, and to load the data into inter-process arrays
during start up or when the lists has been updated. This code is set to run as a
Case of statement. I have found that it is very handy to have all the related code
in one method as it is easier to maintain and keep track of using one method
instead of many. It is very similar to how a form method works.

The first case in the Case of statement looks for when the method is called with no
parameters, like when it is called from the menu bar. This will cause the dialog to
open and allow the users to edit their lists. You could check to see if the user has
permission to run this menu item or not, but that is not part of this Technical Note.

The “Modified” case of the Case of statement handles saving changes to a specific
list. There are two very import variables passed to this method. The first,
"sListName", tells the method which list to update and the other, "bListModified",
lets the code know if anything was actually modified and needs to be updated. Any

time lists elements are added, modified or deleted the "bListModified" variable is set
to True. When a different list is selected or the window is closed, the previously
selected list is checked to see if it needs to be updated using this variable. Instead
of trying to keep track of each list element, and there may be many of each, when
this variable is True we know that something has been changed, so we delete ALL
the saved records for that list and create new [xLists] records with the current
data. This is much easier than trying to figure out what has been changed and what
has not. Once this step is done we set the "bListModified" variable back to False
until we update the list elements again.

The last selection of the Case of code is the "Build" section which is used to create
inter-process arrays that are used throughout the database. This function is called
from the OnStartup code and after the xLists PM has been accessed. The arrays
used here are just examples to see how they are loaded. In a real database, I
sometimes have up to 15 to 20 arrays defined like this. Remember that these are
inter-process arrays, not process or local arrays. That means that they are the
same arrays used by all clients and processes in your database. Use a process array
if you are only using that array for that user or process. You can still use the
[xLists] table and the code shown here to updated the elements of those process
arrays, you just do not load them here, you would load them when the process or
method is run.

Using the Demo Database
--

There are two demo tables, [People] and [PeopleKeywords]. [People] is a simple
ID, name and address type table, [PeopleKeywords] is also a very simple table that
has an ID field, a PeopleID field (to relate it to a specific [People] record) and a
Keyword field. Each table's ID field is set using the Trigger method when the new
record is first created using the Sequence Number command.

All forms for these two tables are very basic with the exception of the [People]Input
form where there is a List Box area that shows the related [PeopleKeywords]
records. This List Box, and the two buttons next to it, are all managed by the
"People_Keywords" PM. Each of these objects calls this method when something
needs to be done. All code and variables relating to the Keywords are defined and
run in this one PM. Note that the + and - buttons could be removed and all the
functionality need to maintain the Keywords for a person could be managed by just
double-clicking the list and using the window displayed.

When the user opens the window (double-clicking or + button) to modify the
keywords related to a person they are using the [People]Keywords form. This form
shows all the "master" keywords that have been defined and what keywords have
already been "selected" for that particular [People] record. Double-clicking or
dragging-dropping on either list will add or remove the keywords as needed. Once
again the "People_Keywords" PM is used to manage all this data as part of the
Case of statement.

If a [People] record is deleted from the Output Form using the Delete… menu item,

the "People_Delete" PM code calls the "People_Keywords" PM in order to delete all
related [PeopleKeywords] records before deleting the [People] record. There is no
need to have those unused keywords laying around the data file.

Once again, having all the code and variables used for this set of data defined and
used in one method, "People_Keywords", makes it very easy to duplicate this type
of functionality somewhere else in the database. All you need to do once you have
defined your new keyword table (e.g. [CompaniesKeywords]) is copy and paste the
form and the project method, do a search and replace on the method, variable and
field names used for the new values and test it. I have used "keywords" here many
times, but this could also been something very differently named for your particular
database needs.

In the [People]Input form are two other areas that we are using custom lists. Next
to the [People]City field is a popup menu that is populated by the [xLists] data and
allows the user to quickly pick a city from the list. In the [People]State field the
code checks to see if a hand-entered state is part of the valid list of states. Both of
these examples have very simple code attached to them and they use arrays
populated from the [xLists] data as appropriate.

Limitations and Enhancements
--

One thing that this Technical Note does not address is that it does not allow for
Icons or Images to be associated with List elements. This functionality could be
added if needed by adding another field to the [xLists] table and the appropriate
code to manage that fields data entry and viewing of the lists.

Conclusion
--

This Technical Note shows how a common function needed in many 4D database
applications can be added with little change to your current database code. Please
examine the code for much more specific comments of what each section of the
code is doing and if it needs to be modified in order to be moved into your
database.

Larry Sharpe can be contacted at (831) 373-6266 or LSharpe@infoservice.com

