
Protecting Against Bad Parameter Counts

By David Adams

Technical Note 07-14

Overview
--

Calling a custom method with an incorrect parameter list may lead to error
displays, crashes, or miscalculations in data. Fortunately, all of these problems are
easily avoided with some simple defensive code. This technical note describes the
range of behaviors 4th Dimension exhibits when methods do not protect against
bad parameter counts, and then provides a generalized method for detecting and
managing bad parameter lists.

Example Method and 4th Dimension Behavior
--

Before discussing code to solve the problems associated with bad parameter lists, it
is worth exploring the full range of possible behaviors 4th Dimension may exhibit
when missing parameters are addressed. For this discussion, consider the method
listed below called DisplaySum:

C_LONGINT($1;$firstValue_l)
C_LONGINT($2;$secondValue_l)

$firstValue_l:=$1
$secondValue_l:=$2

C_LONGINT($sum_l)
$sum_l:=$firstValue_l+$secondValue_l
ALERT(String($sum_l))

The code adds two longints passed as parameters and displays the result. The
example is deliberately trivial for clarity. Below is a sample of a call made to
DisplaySum with the correct number of parameters:

DisplaySum (1;2)

The DisplaySum method adds the values in $1 and $2 and displays their total, as
pictured below:

What happens when not enough parameters are passed? For example, what does
4th Dimension do when only one parameter is passed, as in the example below:

DisplaySum (1) ` Only one parameter is passed while two are required.

In such a situation, the following line of code within DisplaySum is invalid:

$secondValue_l:=$2

What happens at this point in the execution of DisplaySum depends on the
operating system, version of 4th Dimension, and if and how the code is compiled.
We will now review how 4th Dimension reacts to the problem code in various
situations.
Bad Method Calls: Interpreted

When run in an interpreted environment, the problem code very consistently leads
to a syntax error dialog, like the one pictured below:

The error shown above is exactly what should be hoped for as no value was passed
for $2. Ideally, test code and test procedures exercise all of the relevant code in a
system to flush out errors of this sort. However, even with good testing procedures
in place, it is relatively easy to write method calls with bad parameter lists.

Bad Method Calls: Compiled without Range Checking on Windows

The consequences of a bad parameter list can be more severe in a compiled
database than in an interpreted one. While the exact behavior in a compiled
program is variable, it is never desirable. For example, below is the outcome from
running the problem code in a database without range checking on Windows XP:

The dialog above should give anyone pause. Given that one bad parameter
assignment in a program with hundreds of thousands of lines of code can crash a
system, it is worth spending some effort to defend against such problems. This is
particularly important as crash screens, like the one above, provide little or no
information about the source of the problem. There is no way to know if there is a
bug in 4th Dimension, a plug-in, or custom code. For example, the image below
shows the technical information offered when selecting the click here link:

Unfortunately there is nothing in the error screen above, or in the more detailed
report it links to, that identifies what the problem is.

Bad Method Calls: Compiled without Range Checking on OS X

As disturbing as a crash may be, at least it is clear the system has a problem. The
results of running the same code in a database compiled without range checking on
OS X are arguably more insidious:

In this trivial example, it does not matter that the alert shows that 1 = 1584 (which
is only true for very large values of 1), but what if the routine returns results used
in calculations? Data can be subtly distorted without detection. In a way, a hard
crash is more desirable as the problem is more likely to get immediate attention.

Bad Method Calls: Compiled with Range Checking

With range checking enabled, 4th Dimension displays, or attempts to display, a
dialog similar to the syntax error dialog seen in interpreted mode:

Alerts, such as the ones above, are more helpful than crashes or bad results. Even
the impossible to read OS X dialog makes it obvious something is wrong with the
program. Such alerts improve the chances of a bug being discovered before harm is
done to the data.

Tip Compile with range checking turned on. The runtime speed cost of range checking is too
small to be worth measuring or worrying about outside of rare situations.

About the Behavior Documented Above

The behavior described above showing how 4th Dimension reacts to a bad
parameter list in various situations should not be depended upon. Future versions
of 4th Dimension may behave differently than what has been described here.
Regardless, there is close to no desirable behavior available. At most, 4th
Dimension should fail over gracefully when passed a bad parameter list.
Regardless, a bad parameter list is a developer bug and should be detected and
fixed.

Detecting and Stopping Bad Parameter Lists
--

Counting Parameters within Each Method

Avoiding problems from reading or assigning missing parameters is as simple as
counting the parameters before using them, as illustrated in the code below:

If (Count parameters=2)
$firstValue_l:=$1
$secondValue_l:=$2

C_LONGINT($sum_l)
$sum_l:=$firstValue_l+$secondValue_l
ALERT(String($sum_l))

Else
ALERT(“DisplaySum was called with the wrong number of parameters.")

End if

When called with anything other than two parameters, the routine now shows an
alert like the one pictured below:

A simple If test and an ALERT are superior to any of the earlier approaches. Now
there is no possibility of a crash or bad results, and the exact location of the
problem is indicated on screen.

Tip It is not necessary to use the ALERT command when encountering an error. This command
is undesirable when, for example, code is called in triggers, over the Web, or through SOAP.
Instead errors can be logged, displayed, or returned, as appropriate for the current context.

Using a Centralized Parameter Tester

While the code shown above solves the problems associated with addressing
missing parameters, it embeds the error management logic directly in the method.
For many developers, it is more convenient and flexible to keep the error
management behavior slightly separate from working code. For example, consider
the revised method below:

C_LONGINT($1;$firstValue_l)
C_LONGINT($2;$secondValue_l)

If (ParameterCountIsOkay (Current method name;2;2;Count parameters))
$firstValue_l:=$1
$secondValue_l:=$2

C_LONGINT($sum_l)
$sum_l:=$firstValue_l+$secondValue_l
ALERT(String($sum_l))

End if

Instead of counting the parameters directly, a function named
ParameterCountIsOkay is called. The subroutine takes the calling method's name,
the minimum number of parameters expected, the maximum number of
parameters expected, and the actual number of parameters received. The
ParameterCountIsOkay routine tests that the parameter count is within range and,
if not, displays an error like the one pictured below:

The code for the ParameterCountIsOkay routine is listed below:

C_BOOLEAN($0;$countIsOkay_b)
C_TEXT($1;$methodName_text)
C_LONGINT($2;$min)
C_LONGINT($3;$max)
C_LONGINT($4;$count)

$countIsOkay_b:=False` Default.

If (Count parameters>=4)` Test that this routine has enough parameters!
$methodName_text:=$1
$min:=$2
$max:=$3
$count:=$4

If (($count<$min) | ($count>$max))` Not enough parameters | Too many parameters
$countIsOkay_b:=False` This is a good place to log or display an error.

C_TEXT($error_text)
$error_text:=""
$error_text:=$error_text+Char(Double quote)+$methodName_text+Char(Double quote)
$error_text:=$error_text+" called with "+String($count)+" parameter(s). "
$error_text:=$error_text+Char(Carriage return)+Char(Carriage return)
$error_text:=$error_text+"At least "+String($min)+
$error_text:=$error_text+" required and at most "+String($max)+" allowed."
ALERT($error_text)

Else
$countIsOkay_b:=True

End if

Else ` The ParameterCountIsOkay routine didn't get enough parameters.
` This is a good place to log or display an error.
C_TEXT($error_text)
$error_text:=""

$error_text:=$error_text+" called with "+String($count)+" parameter(s). "
$error_text:=$error_text+Char(Carriage return)
$error_text:=$error_text+"Four parameters are required"
ALERT($error_text)

End if `(Count parameters>=4)

$0:=$countIsOkay_b

There are several advantages to moving the logic into a function like
ParameterCountIsOkay, including:

• Coding for individual methods is as easy as adding an If test before using
parameters. Individual routines do not need to handle parameter count errors
themselves. Therefore, each individual method is slightly simpler and smaller
than it would otherwise have to be.

• Testing, debugging, and maintaining the code is easier.
• Centralizing the behavior simplifies adding new features, such as adding errors to

a log, emailing errors, or suppressing error dialogs when within a trigger or
Web/SOAP process.

Regarding ON ERR CALL

The ON ERR CALL command provides a way of inserting a custom method into the
error management process. Ideally, when an error is encountered, the custom error
handler method installed with ON ERR CALL runs, and the program does not
crash, show a range check dialog, or syntax error dialog. Unfortunately, ON ERR
CALL's exact limits are not documented and the feature does not trap all errors.
For example, ON ERR CALL does not meaningfully improve management of bad
parameter list errors in compiled code.

Summary
--

Reading missing parameters in custom methods may cause error dialogs, program
crashes, or distorted results. All of these problems can be avoided with simple
defensive coding. This technical note explores some of the various behaviors of
overly trusting code with bad parameter lists and then shows how to prevent
problems 100% of the time.

