SVG Charts in 4D v11 SQL

By Christopher Visaya, Technical Support Engineer, 4D Inc.

Technical Note 07-40

Abstract

Scalable Vector Graphics (SVG) is an XML-based language used to create rich, two-
dimensional graphics. This file format has a few characteristics that allow for some
advantages over more popular image types such as JPEG or GIF. For example, it is
(as its name implies) scalable; SVG images are not pixel-based, they are vector-
based images. They are built from geometric shapes, such as lines, which means
they do not need to store information for each pixel.

4D v11 SQL features native support for SVG.

SVG is typically used to draw statistical data and, although the language is
contained within an XML tree, 4D developers can modify SVG attributes directly
within the 4D method editor. This document includes an example database to
generate and modify statistical SVG graphs, output results in a form, and export
the image as an SVG image to the disk.

Invoking SVG

4D v11 SQL has a built-in SVG rendering engine. There are a few ways within 4D to
tap into this. One of those ways is with using the GRAPH command. This command
has changed slightly from the past in that it is up to the user to decide which
graphics engine to use based on the first parameter. The syntax for this command
is as follows:

GRAPH (graphArea;graphNumber; xLabels;yElements{;yElements2;..; yElementsN})

The graphArea parameter determines which graphics engine will be used: passing a
4D Chart area or graph area reference will use the 4D Chart plug in. Passing a
picture variable will make 4D use the SVG engine. In the sample database, observe
that the input form has a variable of type Picture and thus whatever is graphed will
be done using SVG:

. * »

raphPict Property List
A | wiEraphPict (Variablel) v | &
B @] &=2 1]
¥ (7} Dbjects ~
Type Yariable
Cbject Mame ‘Wariable1

® ‘ariable Mame wiaraphPict
‘ariable Type Picture
= - - - .

Since the GRAPH command is being used, it is also necessary to use the GRAPH
SETTINGS command. The syntax for this command is as follows:

GRAPH SETTINGS (graph;xmin;xmax;ymin; ymax;xprop;xgrid;ygrid;title{;title2;..;titleN})
The graph parameter needs to match up with the graphArea parameter from the

GRAPH command. Beyond that, setting the rest of the parameters is
straightforward.

The Sample Database

The sample database referenced in this document is based upon an imaginary user
who is tracking how they are devoting their daily exercise time. There are 3
physical activities that the person participates in: playing the Nintendo Wii; working
out at a gym; and playing basketball. The hours spent doing each activity have
been tracked over the course of a 31-day month and now the user wants to graph
the data.

To view the demo dialog, launch the sample database in 4D v11 SQL, open the
“Test” menu, and select "Open Demo Dialog”:

CEE—— | o

Total Times (In Hours) Tatal Hours

2310

2200 B v
2000 @ o
B Baskethall

1300

1600

1400

1200

There are three graphs included in the sample database. In the first graph, the total
hours spent on each activity over the month are graphed. This is done by
associating an object method with the drop down list, PDListl to draw the graph
onto the vGraphPict picture variable. Here is the code:

‘Create the string for the X-axis label.
ARRAY STRING(10;times;1)
times{1l}:="total"

‘Arrays for holding the total time spent in each activity)
ARRAY REAL (wii time;1)

wii time{l}:=Sum([Phys Time]Wii)

ARRAY REAL (gym time;1)

gym time{l}:=Sum([Phys Time]Gym)
ARRAY REAL (bas time;1)
bas time{l}:=Sum([Phys Time]Basketball)

GRAPH (vGraphPict;1l;times;wii time;gym time;bas time)
GRAPH SETTINGS (vGraphPict;0;0;0;0;False;False;True;"Wii";"Gym"; "Basketball")

Note the arguments in the second to last line of the code:

GRAPH (vGraphPict;1;times;wii time;gym time;bas time)

The graph style is set to 1 and thus the resultant style will be a standard column -
or bar - graph. Other styles are available when using numbers 1 through 8. The
last three parameters declare what datasets to graph. In this case they are the
three time totals calculated earlier in the code, time spent on the Wii, at the gym
and playing basketball.

Now note the settings in the last line of code:
GRAPH SETTINGS (vGraphPict;0;0;0;0;False;False;True;"Wii";"Gym"; "Basketball")

The four zeros indicate the minimum X-value, maximum X-value, minimum Y-value
and maximum Y-value of the graph. When set to zero, default values are used. The
first “False” argument indicates that the graph will not use a proportional x-axis;
instead it will use a normal x-axis. The second “False” indicates that no x-axis lines
will be drawn. The “True” argument indicates that y-axis lines will be drawn. Last,
the graph legend items are named. These need to be in the same order as the
datasets used in the GRAPH command were called.

Here is the resulting graph:

2310
2200

- Wi
@ cvm

L B Easketban |

2000

1200

1a00

1400

1200

1000

200

ann

Note that the SVG graph offers a cleaner, more modern look than the older 4D
Chart style. If this newer look does not suit a user’s needs, the old graph look is
still accessible by placing a 4D Chart area on the form.

There are two remaining graphs in the sample database: One graph charts the
average time spent on each activity; and the second graph shows how much time
was spent on each activity per day. Each day is printed along the x-axis and the
amount of time spent on each activity is graphed per day. The algorithms that
determine these values vary per graph, but the way the SVG engine is utilized is
the same. Try selecting the other two graphs by changing the dropdown menu’s
value to see the differences.

Contextual Menus and Exporting

Select “Total Days” from the drop down menu to display the time spent on each
activity on each day. An SVG graph similar to the one below should show up:

This is completely illegible! Fortunately, it is not necessary to go back into design
mode to adjust how this graph is displayed.

An immediate advantage to rendering images in SVG is the ability to access a
contextual menu. Simply hover the mouse pointer over the graph and right-click
(Windows) or Control + click (Mac OS) the image. The following contextual menu is
now accessible:

FHFTTIES
i :‘:.:I Copy

Faste

Clear

Import, ..
Save as...

Display Faormat * Truncated non-centered
Scaled bo Fit
v Scaled ta fit centered prop.

There are standard “Cut”, “"Copy”, “Paste” and “Clear” menu choices available to
use. For the sake of remedying the display problem, expand the “Display format”
choice. Try the three different formats. An example of the “Truncated non-
centered” and “Scaled to fit” formats are shown below:

~

[
[

I

£ > SRl S S S e e e (S GGl A (e el S ST R e e s el)

(a) (b)

In image (a), the “Truncated non-centered” format allows the use of scrollbars. This
allows users to view detailed information such as the graph labels along the x and
y-axis, but it does not do a good job of showing an overall picture. The image in (b)
does show the overall picture since the graph is scaled to fit inside the space
allotted to the variable. It is also in @ more manageable size than “Scaled to fit
centered prop.”, but due to the image distortion, is still impossible to read.

There is one more feature that can be used to grant the user the best of both
worlds. Right-click (Win) or Control + click (Mac) the graph. Select “Save as...”.

In the save dialog box that shows up, the user is given the choice to save the
image as any type available on their local machine, including SVG. Why is this
important? Now the user has many other image types at their disposal. For
instance, they can save the image and open it using an internet browser. Zooms
and scrolls are an ease using any ubiquitous browser. Furthermore, their graph is
now saved for future use on the disk, in or out of 4D.

Another Way to use SVG...

When testing the application, notice that the box in the top left hand corner of the
form changes to display a title for each of the different graphs. This could have
been done using normal 4D text commands, but was done here using an SVG
image. The code can be found in the project method, “graph_title”. The relevant
snippet of code is printed here for convenience:

C_PICTURE (vPicHello)
$svg:=DOM Create XML Ref ("svg")

$ref:=DOM Create XML element ($svg;"text";"font-weight";"bold";"font-
size";18;"£ill";"blue")

DOM SET XML ELEMENT VALUE ($ref;$label)

DOM EXPORT TO PICTURE ($svg;vPicHello;Copy XML Data Source)

DOM CLOSE XML ($svg)

The first few lines of this code set up the XML tree and create an XML element, a
“text” element. The formatting of this element (bolding, sizing and color) is all done
using standard SVG code. More information on formatting the font can be found at:

http://www.w3.0org/TR/SVG11/fonts.html

The last three lines set the element’s value. In DOM SET XML ELEMENT VALUE,
$label varies depending on the graph being displayed. This is how the value of the
text is decided. The DOM EXPORT TO PICTURE command is used to save the SVG
image into the picture variable, “vPicHello”. The last parameter in this command
lets 4D keep a copy of the XML tree with the picture for future use. The last
command, DOM CLOSE XML, frees the memory that the XML object occupied.

Here is what the output looks like when displaying all days:

Total Daily Times (In Hours)

It is possible to modify the XML tree that was created from either of the two
methods above. A presentation for manipulating XML can be found using the
different tech notes available at:

http://www.4d.com/support/technotes.html

Conclusion

This technical note described the general concepts of creating SVG graphs using
data from records. Two different methods for creating an SVG file were presented
both in the context of concepts that are not new to the 4D design environment:
Using GRAPH and a picture variable, and creating an XML element. The information
above should shed a little light for the developer to utilize SVG in their databases.

