
Google Calendar: Downloading Future Events

By Robert Molina, Technical Support Engineer, 4D Inc.

Technical Note 07-30

Abstract
--

This Technical Note provides information on how to interface with the Google
Calendar API using 4D Internet Commands. Specifically, it shows how to download
future events from your Google Calendars and display the data in a 4D Database.
In addition, a sample database is provided.

Introduction
--

Google is known industry wide for its popular search engine. It was founded in
September 27, 1998. Their mission statement is "to organize the world's
information and make it universally accessible and useful”. Since their existence in
1998, Google has evolved to provide other services such as web-based email,
online mapping, video sharing and a web based calendar. In addition to providing
these services to the public, Google has also provided Developers with an
Application Program Interface (API) that allows interaction with their web based
services.

The Technical Note focuses on a specific service, Google Calendar. It provides
examples of authenticating, requesting a calendar list and requesting future events
from the Google Calendar Service.

What is Google Calendar?
--

Google Calendar is a web-based application that assists users with time
management. It is similar to the desktop calendar applications such as iCal and
Microsoft Outlook. Unlike desktop applications, Google Calendar is not platform
dependent. Here is an example of a Google Calendar:

Features of Google Calendar

• Calendar Sharing: Set up a calendar for your company softball team, and
share it with the whole roster. (Your shortstop will never forget about
practice again.) Or share with friends and family so you can view each
other's schedules side by side.

• Gmail Integration: Add your friend's Super Bowl party to your calendar
without ever leaving your Gmail inbox. Gmail now recognizes events
mentioned in emails.

• Search: Find the date of the Baxter family BBQ (you knew it was sometime
this summer). Or, search public calendars to discover new events you're
interested in and add them to your own calendar.

• Mobile Access: Receive event reminders and notifications on your mobile
phone.

• Event Publishing: Share your organization's events with the world. Learn
more with our Event Publisher Guide

• Languages: The interface is currently available in English, French, Italian,
German, Spanish, Danish, Dutch, Norwegian, Finnish, Swedish, Russian,
Chinese-Simplified, Chinese-Traditional, Korean, Japanese, Portuguese and
Polish. You can enter calendar information in many other languages, too.

• Cost: Free

For more information you can visit the Google Calendar site:

http://www.google.com/googlecalendar/overview.html

Technologies used with the Google Calendar API
--

The following are the technologies used in the interaction with Google Calendar API.

XML
The exchange of data will be done using XML data format. The data will be placed in
the HTTP body. This body will be parsed with the built-in DOM XML commands to
obtain the wanted data.

HTTP
Google provides client libraries to interact with the API such as Java, .Net, and PHP.
There is no client library for 4th Dimension. Therefore, we will be sending raw HTTP
requests and also be receiving raw HTTP responses. The plug-in that will assist in
making those requests is 4D Internet Commands. We will be generating POST and
GET requests.

REST (Representational State Transfer)
REST is an architectural style for distributed computing. Put simply, it allows the
exchanging of data using XML over HTTP with the use of URL’s. For more
information regarding this technology in relation to 4th Dimension, please view
“Building a REST Client” Technical Note:
http://www.4d.com/knowledgebase?CaseID=43778

GDATA (Google Data API)
Gdata is a simple standard protocol for reading and writing data used in Google
Services such as Google Calendar. It consists of a combination of technologies. It
uses Atom 1.0, RSS 2.0 (Really Simple Syndication) and Atom Publishing Protocol.
These technologies are used for syndicating or distributing web feeds such as blogs
and podcasts. It notifies a subscribed client that a new blog has been written or a
new podcast is available for download. When publishing Gdata feeds, it conforms
to the Atom publishing protocol and requires sending an HTTP Put Request. When
receiving Gdata, it conforms to the RSS or Atom formats which require sending a
HTTP GET Request.

Note The Atom format is the default format. This format will be used in this Technical
Note. If you are interested in receiving the data in RSS format, please view
http://code.google.com/apis/gdata/reference.html#query-requests

In addition, the GData protocol does not provide ways to create or delete a feed.
That is up to the service.

Note Google Calendar service currently does not delete feeds. Although it does allow
querying of the service to check for deleted feeds in order to update or sync with a
client application.

For more information regarding RSS and Atom feel free to view the suggested links:

RSS Feeds:
http://feedvalidator.org/docs/rss2.html

Atom:
http://en.wikipedia.org/wiki/Atom_%28standard%29

The Example Implementation
--

The implementation presented in this Technical Note uses the Google Calendar API
to fetch all future events from a Google Calendar (or Calendars). There are three
main steps to complete this process:

• Authentication
• Request the Calendar List
• Request Future Events

The steps are described in-depth in the following sections.

Authentication
--

Gdata is able to provide public data feeds or private data feeds. Private data feeds,
in the context of the Google Calendar Service is simply a Calendar that has not
been made public. Therefore, events from this Calendar cannot be accessed by
anyone other than the user who created it and whom he or she has shared the
calendar with.

In order to request private data feeds, the obvious detail one needs is a Google
Account. A google account can be created here:

https://www.google.com/accounts/NewAccount

In addition, if you already have a Gmail account this also qualifies as a Google
account.

Building Request to Authenticate
The following is code that builds the request. Please refer to the project method
G_Authenticate to see the code in its entirety.

$body:="Email="+<>account+"&Passwd="+$pass+"&service="+<>service+"&source="+<>sourc
$body := $body +\r\n"
$body_length:=Length($body)

$request_string:="POST /accounts/ClientLogin "+"HTTP/1.1"+"\r\n"
$request_string:=$request_string+"Content-Length: "+String($body_length)+"\r\n"
$request_string:=$request_string+"Content-Type: application/x-www-form-
urlencoded"+"\r\n"+"\r\n"
$request_string:=$request_string+$body

When the code is executed, the variable $request_string will contain the
following:

POST /accounts/ClientLogin HTTP/1.0
Content-Length: 73
Content-Type: application/x-www-form-urlencoded

Email=rmolina@4d.com&Passwd=password&service=cl&source=4D-4Dcal-ver1.0

Some key things to make note of in the request is the “\r\n” characters. These are
control characters that are needed to separate each line.

Note To separate the HTTP header and HTTP body, there are two consecutive “\r\n” or
CRLF. This follows the HTTP 1.0 standard as explained in RFC 1945.

The first line in the header specifies the type of request as well as the specific URL
(/accounts/ClientLogin) that tells the web service that the request is attempting to
authenticate. Because there is a body in this request, the Content-Length and
Content-Type Headers must be included.

In the body, there are four parameters that are passed. Each are separated with
an “&”. Here is a description of each parameter.

• Email
This parameter is the email registered with the Google account.

Note If using a Gmail account, the domain “@gmail.com” is optional when sending
account information.

• Passwd
This parameter is the user’s password.

• Service
This parameter is used to pass the Google service which the user is trying to
authenticate. The name used for Google Calendar service is ‘cl’. This
parameter is required when accessing GData services.

• Source
This parameter is a short string that identifies your application. This
normally has the form “companyName-applicationName-versionId”.

These four parameters are the only ones used in the example database. There are
three other parameters accountType, logintoken, and logincaptcha that can be
used as well that do not apply to the example. For more information regarding
these parameters please visit the “Google Account Authentication” page:

http://code.google.com/apis/accounts/AuthForInstalledApps.html

Note The parameters are case sensitive and should be entered accordingly when inserted
in the body of the request.

Sending the Request
As mentioned previously, sending the request requires the use of 4D Internet
Commands. A TCP connection is opened with the following line of code.

$error:=TCP_Open (<>hostname;<>port;$tcp_id;3)

This request is being sent using Asynchronous SSL protocol. This is highly
suggested since the username/email and password is being sent over the web.

Receiving the Response
Once connection is established and a request to the service has been made, then
the code simply waits for incoming data. The incoming data will be formatted as an
HTTP response. Here is a sample response where the authentication was approved
and the service returns a HTTP 200.

HTTP/1.0 200 OK
Content-Type: text/plain
Cache-control: no-cache
Pragma: no-cache
Content-Length: 497
Date: Tue, 31 Jul 2007 01:45:46 GMT
Server: GFE/1.3
Connection: Close

SID=DQAAAGcAAADoZbAolHTfJ9ISSH4LizLIbcuzQeKfiOZ9ig_Gia_Rjj3q2l-PdCo61fc139iR-
aklBNqbWd57dPCxKpO62fTdByqgufo7CShY9D3JpPDZvEUcOZFDVL5Z_hYsM-
sbiFlfmjIbXE4VpqtskKJaZEBV
LSID=DQAAAGkAAAD6k9mb5_Kl3-
u5I8A9La4xD67LFEXYFy4G9qWL7YKeOwJkV1_pF3bkgpoZUsKjJ06kgqFS7YX2SGs-
1xjQANwijQlVhkDR6MKJfVAnS4ps1qaweQfXVEUNS5rWDlq-qOipf08T6lkUnHTSP11drTTX
Auth=DQAAAGoAAAD6k9mb5_Kl3-
u5I8A9La4xD67LFEnYFy4G9qWL7YKeOwJkV1_pF3bkgpoZUsljJ05HZIuEfr6qspyAhYVPgLZdh5beUYPURlDo
SICa_dRiGQnDYWs2m8QEs_AP8sWTDbXfJD4yFms35H9tQg4AMN0N

The response contains the Auth token. The Auth token provides private access to
the specified user’s Google Calendar service. These tokens should be kept private
as much as possible because if another unauthorized user gets a hold of these
tokens, they can gain access to your account. These tokens are specific to the user
and service from which they have been generated from. Having these tokens
prevents having to authenticate each time a request is being made to the service.
In addition to the Auth Token, there are two other tokens, SID and LSID. These
tokens at the moment currently do not serve a purpose and are intended for future
implementations.

Note The Auth token generated by the ClientLogin is session type token that remains valid
for a set time limit. This time limit is specified by the Google Calendar Service. In
my testing, I was not able to determine how long an Auth Token remains valid.

Along with the HTTP 200 response, you may also receive a HTTP 403 response
which normally contains an Error code.

HTTP/1.0 403 Forbidden
Content-Type: text/plain
Cache-control: no-cache
Pragma: no-cache
Content-Length: 24
Date: Tue, 31 Jul 2007 02:33:11 GMT
Server: GFE/1.3
Connection: Close

Error=BadAuthentication

The error returned is BadAuthentication which means that the username or
password is incorrect. Here is list of other error codes that may be returned when
trying to authenticate.

The next step is to request the calendar list.

Request the Calendar List
--

The code for requesting a calendar list is not much different compared to a request
to receive an authentication token. The main difference here is that there is no
body and all information is stored within the header portion of the HTTP request.
Here is an example:

$request_string:="GET /calendar/feeds/"+$account+" HTTP/1.0"+"\r\n"
$request_string:=$request_string+"Authorization:GoogleLogin"+"auth="+$authkey+"\r\n”

Two variables are included in the request string $account and $authkey. The
$account is simply the email account and the $authkey is the authentication
token.

Here is the request:

GET /calendar/feeds/rmolina@4d.com HTTP/1.0
Authorization: GoogleLogin auth=SQAAAGoAAAD6k9mb5_Kl3-
u5I8T9La4xD67LFEXYFy4G9qWL7YKeOwKkV1_pF3bkgpoZUsKjJ05HZIuEfr6qsTyAhYVPgLZdh5TeUYPURlDo
SICa_dRiTMnDkWs2m8QEs_AP8sWTDbXfWD4yFms35H9tQg4AMN0N

Error Code Description

BadAuthentication The login request used a username or password that is not
recognized.

NotVerified The account email address has not been verified. The user
will need to access their Google account directly to resolve
the issue before logging in using a non-Google application.

TermsNotAgreed The user has not agreed to terms. The user will need to
access their Google account directly to resolve the issue
before logging in using a non-Google application.

CaptchaRequired A CAPTCHA is required. (A response with this error code will
also contain an image URL and a CAPTCHA token.)

Unknown The error is unknown or unspecified; the request contained
invalid input or was malformed.

AccountDeleted The user account has been deleted.
AccountDisabled The user account has been disabled.
ServiceDisabled The user's access to the specified service has been disabled.

(The user account may still be valid.)
ServiceUnavailable The service is not available; try again later.

A Different Response
The response received resulting from the above request may not be what one is
expecting. For example:

HTTP/1.0 302 Moved Temporarily
Set-Cookie: S=calendar=yymxep90KJs
Location: https://www.google.com/calendar/feeds/rmolina@4d.com?gsessionid=yPmxWp90KJT
Content-Type: text/html; charset=UTF-8
Cache-control: private
Content-Length: 257
Date: Tue, 31 Jul 2007 03:26:37 GMT
Server: GFE/1.3
Connection: Close

<HTML>
<HEAD>
<TITLE>Moved Temporarily</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">
<H1>Moved Temporarily</H1>
The document has moved her
e.
</BODY>
</HTML>

This time the response received is a “302 Moved Temporarily”. When receiving this
response, it means that the service is redirecting to a new location. The Location:
header field is what is needed in order to build the next request. The following
code returns the redirect URL with the included gsessionID. The code is from the
project method G_GetSessionIdURL.

C_BLOB($1)
C_BLOB($parseblob)
C_INTEGER($positionstart)
C_INTEGER($positionend)
C_TEXT($0)
$parseblob:=$1
$positionstart:=PositionInBlob ($parseblob;"Location")
If ($positionstart>=0)

DELETE FROM BLOB($parseblob;0;$positionstart)
$positionstart:=PositionInBlob ($parseblob;"com")
$positionend:=PositionInBlob ($parseblob;Char(10))
`remove the end
DELETE FROM BLOB($parseblob;$positionend;(BLOB size($parseblob)-1))
DELETE FROM BLOB($parseblob;0;($positionstart+3))
$0:=BLOB to text($parseblob;Text without length)

Else
$0:=""

End if

A walkthrough of the code above:

• First check to see if you find the string “Location” is in the blob.
• Once finding the position of where the string “Location” starts, delete all

bytes before the string.

• Now find where the position of “com” starts
• Find the position of char(10)
• Starting at the position of char(10),delete all bytes after it.
• Starting at the beginning of the blob, delete all bytes up to and including

“com”

The resulting string should look something like this:

/calendar/feeds/rmolina@4d.com?gsessionid=yPmxWp90KJT

This URL can then be passed on to send another request. In the example database,
this URL is passed on to the project method G_RedirectRequest. Here is the
request that is built and eventually gets sent within the G_RedirectRequest
method .

GET /calendar/feeds/rmolina@4d.com?gsessionid=GocpHEWJ0CM HTTP/1.0
Authorization: GoogleLogin auth=DQSAAHkAAABs-
Kw4XGwQZJEgs6LYu4yzRPIQNvGpkPNe2M18XLOyhVdJo1_MFh-YCY-
smWXUrqk7clC2iJDvJSULhvIQhA_BDYFQuBC6e_dghmR7mq-UN6fq-0i44aEkl89s89lJNQKNX-
sB4pmOb72HCnUeMYLSAsWggSwJIOiXXsUo0fp_2A

The service then responds back with the following data feed.

HTTP/1.0 200 OK
Content-Type: application/atom+xml; charset=UTF-8
Cache-Control: max-age=0, must-revalidate, private
Last-Modified: Tue, 31 Jul 2007 07:57:45 GMT
Date: Tue, 31 Jul 2007 07:57:45 GMT
Server: GFE/1.3
Connection: Close

<?xml version='1.0' encoding='UTF-8'?><feed xmlns='http://www.w3.org/2005/Atom'
xmlns:openSearch='http://a9.com/-/spec/opensearchrss/1.0/'
xmlns:gCal='http://schemas.google.com/gCal/2005'
xmlns:gd='http://schemas.google.com/g/2005'><id>http://www.google.com/calendar/feeds/r
molina%404d.com</id><updated>2007-07-31T07:57:45.661Z</updated><title type='text'>4D
Inc's Calendar List</title><link rel='http://schemas.google.com/g/2005#feed'
type='application/atom+xml'
href='http://www.google.com/calendar/feeds/rmolina%404d.com'/><link
rel='http://schemas.google.com/g/2005#post' type='application/atom+xml'
href='http://www.google.com/calendar/feeds/rmolina%404d.com'/><link rel='self'
type='application/atom+xml'
href='http://www.google.com/calendar/feeds/rmolina%404d.com'/><author><name>4D
Inc</name><email>rmolina@4d.com</email></author><generator version='1.0'
uri='http://www.google.com/calendar'>Google
Calendar</generator><openSearch:startIndex>1</openSearch:startIndex><entry><id>http://
www.google.com/calendar/feeds/rmolina%404d.com/rmolina%404d.com</id><published>2007-
07-31T07:57:45.665Z</published><updated>2007-07-30T15:43:40.000Z</updated><title
type='text'>4D Inc</title><link rel='alternate' type='application/atom+xml'
href='http://www.google.com/calendar/feeds/rmolina%404d.com/private/full'/><link
rel='http://schemas.google.com/acl/2007#accessControlList' type='application/atom+xml'
href='http://www.google.com/calendar/feeds/rmolina%404d.com/acl/full'/><link
rel='self' type='application/atom+xml'
href='http://www.google.com/calendar/feeds/rmolina%404d.com/rmolina%404d.com'/><author
><name>4D Inc</name><email>rmolina@4d.com</email></author><gCal:timezone
value='America/Los_Angeles'/><gCal:hidden value='false'/><gCal:color

value='#A32929'/><gCal:selected value='true'/><gCal:accesslevel
value='owner'/></entry></feed>

Now it is time to parse this xml. The first step is to remove the HTTP body. The
project method that will parse the XML is G_ParseCalList. Here is a piece of the
source code:

$positionstart:=PositionInBlob ($responseblob;Char(13)+Char(10)+Char(13)+Char(10))
DELETE FROM BLOB($responseblob;0;($positionstart+4))

As stated previously, the HTTP header and HTTP body is separated by two sets of
Char(13)+Char(10). Thus, when calling the DELETE FROM BLOB command, it
deletes everything in the HTTP header up to the ‘<?xml’.
At this point we can parse the xml.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<feed xmlns="http://www.w3.org/2005/Atom"
xmlns:gCal="http://schemas.google.com/gCal/2005"
xmlns:gd="http://schemas.google.com/g/2005" xmlns:openSearch="http://a9.com/-
/spec/opensearchrss/1.0/">

 <id>http://www.google.com/calendar/feeds/rmolina%404d.com</id>

 <updated>2007-07-31T08:20:00.874Z</updated>

 <title type="text">4D Inc's Calendar List</title>

 <link href="http://www.google.com/calendar/feeds/rmolina%404d.com"
rel="http://schemas.google.com/g/2005#feed" type="application/atom+xml"/>

 <link href="http://www.google.com/calendar/feeds/rmolina%404d.com"
rel="http://schemas.google.com/g/2005#post" type="application/atom+xml"/>

 <link href="http://www.google.com/calendar/feeds/rmolina%404d.com" rel="self"
type="application/atom+xml"/>

 <author>
 <name>4D Inc</name>
 <email>rmolina@4d.com</email>
 </author>

 <generator uri="http://www.google.com/calendar" version="1.0">Google
Calendar</generator>

 <openSearch:startIndex>1</openSearch:startIndex>

 <entry>
 <id>http://www.google.com/calendar/feeds/rmolina%404d.com/rmolina%404d.com</id>
 <published>2007-07-31T08:20:00.877Z</published>
 <updated>2007-07-30T15:43:40.000Z</updated>
 <title type="text">4D Inc</title>
 <link href="http://www.google.com/calendar/feeds/rmolina%404d.com/private/full"
rel="alternate" type="application/atom+xml"/>
 <link href="http://www.google.com/calendar/feeds/rmolina%404d.com/acl/full"
rel="http://schemas.google.com/acl/2007#accessControlList"
type="application/atom+xml"/>
 <link
href="http://www.google.com/calendar/feeds/rmolina%404d.com/rmolina%404d.com"
rel="self" type="application/atom+xml"/>

 <author>
 <name>4D Inc</name>
 <email>rmolina@4d.com</email>
 </author>
 <gCal:timezone value="America/Los_Angeles"/>
 <gCal:hidden value="false"/>
 <gCal:color value="#A32929"/>
 <gCal:selected value="true"/>
 <gCal:accesslevel value="owner"/>
 </entry>

</feed>

Which Data to Get?
The above Gdata feed contains one calendar entry. Here are the elements that the
sample database parses with the project method G_ParseCalList .

Standard Atom Elements

/feed/entry/id
This is a typical element in an Atom type feed. This is a unique identifier that
allows the feed entry to be distinguished from other entries.

/feed/entry/title
This is simply the title of the entry. In the example feed above, the entry
title is ‘4D Inc’

/feed/entry/updated
This element contains information about when the entry was last updated.
This is element will be used when trying to synchronize your desktop
application with the service.

/feed/entry/link
This element provides a link to current feed as well as an HTML version of the
feed.

Gcal Namespace Elements
(Elements specifically for Google Calendar)

gCal:timezone
This indicates the timezone of the calendar.

gCal:hidden
This element indicates whether the calendar is hidden or not.

gCal:color
This element contains the RGB color hex value used to highlight a calendar in
the user’s browser.

gCal:accesslevel
This indicates the level of access of the current user that requested the feed.

Google Data Namespace Elements
(Elements for all Google Services)

gd:where
This indicates location of the event.

Note When parsing the Google Data Namespace Elements or Gcal Namespace elements,
treat them as you would any other element. For example, to obtain the data from

 <gCal:timezone value="America/Los_Angeles"/>

 Use the following code:

 $currentref2:=DOM Get XML element($currentref;"gCal:timezone";1;$elementValue)

DOM GET XML ATTRIBUTE BY NAME($currentref2;"value";$attribValue)

INSERT ELEMENT($caltimezone;$i)

 $caltimezone{$i}:=$attribValue

For more information regarding Google Data Namespace Elements or Gcal
Namespace elements, please visit:

http://code.google.com/apis/calendar/reference.html#gcal_reference
http://code.google.com/apis/gdata/elements.html#gdReference

Requesting Future Events
--

With an auth token and a list of calendars, future events can be requested. This
process is quite similar to the example provided regarding requesting a calendar
list. The main differences will simply be the actual request sent and the xml data
received.

$request_string:="GET "+$feed+"?futureevents=true"+" HTTP/1.0"+"\r\n"
$request_string:=$request_string+"Authorization: GoogleLogin"+" auth="+$authkey+"\r\n"

The $feed variable contains data from alternative link which came from the
attribute ‘alternate’ from the element /feed/entry/link in the previous example.

GET /calendar/feeds/rmolina%404d.com/private/full?futureevents=true HTTP/1.0
Authorization: GoogleLogin auth=DEAAAGoARADBe8kbX4PmUv_spkGHZS-
K8E8DGbxVh4fzCVDCYkrAW3bOsSqTnN1OwLZKtcq-SxipqxWbqRC81HKik7TydVdkpSBEtqMm87-yXcYXx-
B45_mZ6iX_yPYgrJPdeKbFXl2f4c99-aB11C01-7OUEfO-

The parameter futureevents=true is a calendar query parameter. It is a shortcut
that allows requesting events scheduled at future times. It can accept either the

values True or False. True will request for future events, while false will simply
notify the Google Calendar Service to ignore the parameter.

HTTP/1.0 302 Moved Temporarily
Set-Cookie: S=calendar=xKtYlMByjDE
Location:
https://www.google.com/calendar/feeds/rmolina%404d.com/private/full?futureevents=true&
gsessionid=xKtYlMByjDE
Content-Type: text/html; charset=UTF-8
Cache-control: private
Content-Length: 294
Date: Tue, 31 Jul 2007 12:19:58 GMT
Server: GFE/1.3
Connection: Close

As shown previously, the request may be redirected. We are then able to receive
the feed. Below is the xml that gets parsed (this xml does not display the feed tag
in order to put emphasis on the single entry).

 <entry>

<id>http://www.google.com/calendar/feeds/rmolina%404d.com/private/full/m772g7
1facff1mf1jsh9ru5c4c</id>
 <published>2007-07-30T01:15:17.000Z</published>
 <updated>2007-07-30T01:17:35.000Z</updated>
 <category scheme="http://schemas.google.com/g/2005#kind"
term="http://schemas.google.com/g/2005#event"/>
 <title type="text">4D 2007 Summit</title>
 <content type="text">This 3 day event will be fun-filled as well
informative. </content>
 <link
href="http://www.google.com/calendar/event?eid=bTc3Mmc3MWZhY2ZmMW1mMWpzaDlydT
VjNGMgcm1vbGluYUA0ZC5jb20" rel="alternate" title="alternate"
type="text/html"/>
 <link
href="http://www.google.com/calendar/feeds/rmolina%404d.com/private/full/m772
g71facff1mf1jsh9ru5c4c" rel="self" type="application/atom+xml"/>
 <link
href="http://www.google.com/calendar/feeds/rmolina%404d.com/private/full/m772
g71facff1mf1jsh9ru5c4c/63321441455" rel="edit" type="application/atom+xml"/>
 <author>
 <name>4D Inc</name>
 <email>rmolina@4d.com</email>
 </author>
 <gd:comments>
 <gd:feedLink
href="http://www.google.com/calendar/feeds/rmolina%404d.com/private/full/m772
g71facff1mf1jsh9ru5c4c/comments"/>
 </gd:comments>
 <gd:eventStatus
value="http://schemas.google.com/g/2005#event.confirmed"/>
 <gd:visibility value="http://schemas.google.com/g/2005#event.default"/>
 <gd:transparency
value="http://schemas.google.com/g/2005#event.transparent"/>
 <gd:when endTime="2007-10-20" startTime="2007-10-16">
 <gd:reminder method="alert" minutes="10"/>

 </gd:when>
 <gd:where valueString="Memphis, Tennessee"/>
 </entry>

Again, there is not much difference from the previous example. It has the normal
feed/entry/id element as well as the others discussed in the calendar list request
example. In addition, this event feed has the element feed/entry/content
allowing to read in a description of the event. Another distinguishable difference is
the gd:when element. It has an endTime attribute as well as a startTime attribute
to specify how long the event will last.

Using the Sample Database.
--

This Technical Note comes with a sample database. This sample database provides
a simple demonstration of how to authenticate with the Google Calendar Service as
well as download a calendar list and calendar events.

When launching the application you should be greeted with the following log-in
screen.

If you do not enter a correct password, you will get the following display.

After successfully logging in, the following window will appear:

The first thing you would want to do is click on the ‘Sync Calendar List’ button. This
will download a list of your calendars. Once you have downloaded your calendars,
then you can click on ‘Sync Calendar Event’ button which will then download all
future events for your list of calendars.

Conclusion
--

This Technical Note showed how 4th Dimension may interact with a REST Web
service such as Google Calendar using 4D Internet Commands.

Related Resources
--

Google Calendar Data API Overview

http://code.google.com/apis/calendar/overview.html

Google Calendar Data API Reference Guide

http://code.google.com/apis/calendar/reference.html

Receiving RSS Data feeds
http://code.google.com/apis/gdata/reference.html#query-requests

Google Calendar Overview
http://www.google.com/googlecalendar/overview.html

RSS Feeds
http://feedvalidator.org/docs/rss2.html

Atom
http://en.wikipedia.org/wiki/Atom_%28standard%29

Building a REST Client (Technical Note)
http://www.4d.com/knowledgebase?CaseID=43778

