Enhanced Tools for Reading XML Attributes

By David Adams

Technical Note 06-43

Overview

XML element's may have any number of attributes, such as the id attribute
in the contact element shown below:

<contact id="1">

The DOM (Document Object Model) section of the 4th Dimension language
contains three commands for counting and reading XML attributes, listed
below:

DOM Count XML attributes
DOM GET XML ATTRIBUTE BY INDEX
DOM GET XML ATTRIBUTE BY NAME

This technical note and the accompanying sample database add a humber of
enhancements and refinements to these basic commands, including:
* Automatic error handling to avoid problems from invalid node references.

* Automatic detection of the #document node, which can cause some
versions of 4th Dimension to quit unexpectedly when read for attributes.

Utilities that match elements by name, value, or name and value.
* A tool to copy a node's attribute names and their values to a pair of arrays.

This technical note provides background information on working with XML
nodes and their attributes in 4th Dimension and then documents the utility
routines included in the sample database, listed below:

DOM_AttributesToArrays
DOM_CountAttributes
DOM_GetAttributeNameWithValue
DOM_GetAttributeValueWithName
DOM_HasAttributeNameAndValue
DOM_HasAttributeNamed
DOM_HasAttributeWithValue
DOM_ReferencelsValid

String_EqualCaseSensitively

Note Some of the DOM routines described in this note are also documented in
Technical Note xx-xx, Enhancing the DOM XML Reading Functions.



Note

Background Information on Nodes and Attributes

Tree Navigation and Bad Nodes

4th Dimension's DOM commands render a source XML document or variable
as a tree of linked nodes. The DOM command set includes tools for
navigating through the tree and reading information from nodes. The tree
navigation commands, such as DOM Get Parent XML element and DOM
Get first child XML element, use the OK system variable to indicate when
the command has left the tree and reached a non-existent node. This feature
makes it possible to navigate through the tree without knowing in advance
exactly how many ancestors, siblings, or descendants a particular node has.
However, it also leads to the navigation commands returning references to
invalid nodes. This causes problems when reading information, such as an
element's name, value, or attributes. For example, calling the built-in DOM
GET XML ELEMENT NAME command on an invalid node reference leads to a
dialog like the one pictured below:

The referenced element is null.
|

The XML command cannot be executed

To avoid problems from invalid node references, the database included with
this technical note automatically wraps the standard node reading functions
in an error handler that suppresses error displays. Additionally, the
DOM_ReferencelsValid function offers a simple tool for checking node
validity.

For more details on testing DOM node references for validity and managing
bad nodes, see Technical Note xx-xx, Avoiding Problems Reading DOM
XML Nodes.



XML Attributes and the #document Node

The number of attributes associated with a node can be determined with a
call to DOM Count XML attributes. As with the other DOM reading
commands, 4th Dimension should be expected to throw an error if the node
reference is invalid. However, in the case of DOM Count XML attributes,
there is an additional special case that needs to be detected. Using DOM Get
parent XML element it is possible to navigate above the root of the tree to
an artificial node that holds the XML document information, such as XML
version and encoding type. The DOM GET XML ELEMENT NAME command
treats this artificial node as a valid reference and returns the node name
#document. Unfortunately, in some versions of 4th Dimension, calling DOM
Count XML attributes on the #document element causes 4th Dimension to
quit unexpectedly. Fortunately, this problem is easy to fix by testing the node
name before calling DOM Count XML attributes. This functionality is
implemented in the DOM_CountAttributes function included in the sample
database.

Method Documentation

DOM_AttributesToArrays
DOM_AttributesToArrays (Alpha [16];Pointer;Pointer)
DOM_AttributesToArrays (XML reference;->Names array;->Values array)

This routine copies the attributes of an XML node into a pair of text arrays.

Note: The routine doesn't accept string arrays in the place of text arrays.

DOM_CountAttributes
DOM_CountAttributes (Alpha [16]) : Longint
DOM_CountAttributes (XML reference) : Count of attributes

This routine counts the number of attributes associated with an XML element.
It enhances the behavior of DOM Count XML attributes with automatic
error handling and avoiding reading the attributes of illegal nodes.

DOM_GetAttributeNameWithValue

DOM_GetAttributeNameWithValue (Alpha [16];Text;{Boolean}) : Text
DOM_GetAttributeNameWithValue (XML reference;Value to match;{Compare
values case-sensitively?}) : Matching name or empty string

This routine looks for an attribute based on value and, if found, returns its
name.

Values are compared case-insensitively, by default.



DOM_GetAttributevalueWithName
DOM_GetAttributeValueWithName (Alpha [16];Text) : Text
DOM_GetAttributeValueWithName (XML reference;Name to match) :
Matching value or empty string

Looks for an attribute based on name and, if found, returns its value.

DOM_HasAttributeNamed
DOM_HasAttributeNamed (Alpha [16];Text) : Boolean
DOM_HasAttributeNamed (XML reference;Attribute name): Attribute found?

Tests if an XML node includes a node with the specified name, regardless of
value.

Names are always compared case-sensitively.

DOM_HasAttributeNameAndValue
DOM_HasAttributeNameAndValue (Alpha [16];Text;Text;{Boolean}) :
Boolean

DOM_HasAttributeNameAndValue (XML reference;Attribute name;Attribute
value;{Compare values case-sensitively?}): Attribute found?

Tests if an XML node includes a node with the specified name and value.

Names are always compared case-sensitively, values are compared
case-insensitively, by default.

DOM_HasAttributeWithValue

DOM_HasAttributeWithValue (Alpha [16];Text;{Boolean}) : Boolean
DOM_HasAttributeWithValue (XML reference;Attribute value;{Compare
values case-sensitively?}): Attribute found?

Tests if an XML node includes a node with the specified value, regardless of
name.

Values are compared case-insensitively, by default.

DOM_ReferencelIsValid
DOM_ReferencelsValid (Alpha [16]) : Boolean
DOM_ReferencelsValid (XML reference) : Element reference is valid?

This routine tests if a node reference is valid.

DOM_ReferencelIsValidOnError
This custom error handler is used internally as a custom error handler by the
DOM_ReferencelsValid routine.

DOM_StartCustomErrorHandling

This routine is used internally to record the current error handler name, and
the current value of the Error system variable, as well as to install a custom
error handler.



DOM_StopCustomErrorHandling
This routine is used internally to reverse the operations of the
DOM__StartCustomErrorHandling routine.

String_EqualCaseSensitively
String_EqualCaseSensitively (Text;Text): Boolean
String_EqualCaseSensitively (Base text;Comparison text) : Equal?

This routine tests if two strings/texts are equal case-sensitively. This
functionality is required to compare XML element names, which are always
case-sensitive.

Summary

4th Dimension's native DOM commands include tools for counting and
reading the attributes of an XML node. The sample database implements an
expanded and enhanced suite of attribute-related tools for reuse in any
database. The enhanced routines automatically handle errors, avoid
dangerous calls, and simplify reading and testing attributes and their values.



