
Enhancing the DOM XML Reading Functions

By David Adams

Technical Note 06-40

Overview
------------------------------------------------------------------------------------------------------------------------------------------------

4th Dimension 2004 includes a full suite of commands for reading XML
documents using the Document Object Model. Using the built-in DOM
features, custom routines can scan through an XML tree to read the names,
values, and attributes of each node. While the built-in DOM functions are
feature complete, there is still room for some refinements. Accompanying
this technical note is a sample database that adds automatic error handling,
whitespace cleaning, and new node matching options to the native DOM
routines. The main routines in the system are listed below:

DOM_AttributesToArrays
DOM_CountAttributes
DOM_CountElementByName
DOM_ElementExists
DOM_FindElementByName
DOM_GetElementName
DOM_GetElementValue
DOM_ReferenceIsValid

String_EqualCaseSensitively

XML_CleanWhitespace
XML_InitWhitespaceCharacters

This note takes a quick look at the overall enhancements offered by these
routines and then documents the behavior and documentation of each
method. Within the database, each method is also documented internally and
in the DOM Read Me routine.  A demonstration screen illustrates the
functionality of each behavior.

Background Information and Feature Overview
------------------------------------------------------------------------------------------------------------------------------------------------

Tree Navigation and Bad Nodes
4th Dimension's DOM commands render a source XML document or variable
as a tree of linked nodes. The DOM command set includes tools for
navigating through the tree and reading information from nodes. The tree
navigation commands, such as DOM Get Parent XML element and DOM
Get first child XML element, use the OK system variable to indicate when
the command has left the tree and reached a non-existent node. This feature
makes it possible to navigate through the tree without knowing in advance
exactly how many ancestors, siblings, or descendants a particular node has.



However, it also leads to the navigation commands returning references to
invalid nodes. This causes problems when reading information, such as an
element's name, value, or attributes. For example, calling the built-in DOM
GET XML ELEMENT NAME command on an invalid node reference leads to a
dialog like the one pictured below:

To avoid problems from invalid node references, the database included with
this technical note automatically wraps the standard node reading routines in
an error handler that suppresses error displays. Additionally, the
DOM_ReferenceIsValid function offers a simple tool for checking node
validity.

Note For more details on testing DOM node references for validity and managing
bad nodes, see Technical Note xx-xx, Avoiding Problems Reading DOM
XML Nodes.

Whitespace Handling
XML element values commonly include leading or trailing whitespace
characters that help make the source XML easier to read. For example, it is
common for element values to include extra tabs and carriage returns to
format and indent an XML listing. There may be times when the leading and
trailing whitespace are meaningful and other times when they are not. 4th
Dimension's DOM and SAX commands always assume the whitespace may be
meaningful and return it as part of an element's value. The database included
with this technical note includes a routine named XML_CleanWhitespace that
efficiently trims leading and trailing XML whitespace off a block of text. This
routine may be called at any time with any value. Internally, it is used by
DOM_GetElementValue to add whitespace trimming to the built-in DOM GET
XML ELEMENT VALUE command.

Note For more details on handling XML whitespace, see Technical Note xx-xx,
Cleaning Whitespace from XML Values.



Attribute Handling
XML element's may have any number of attributes, such as the id attribute in
the element shown below:

<contact id="1">

The built-in DOM commands support reading the attributes of a node by
name or index. As a convenience, the sample database includes a function
named DOM_AttributesToArrays that copies all of a node's attributes into a
pair of text arrays.

Apart from throwing an error when called on an invalid node reference, the
DOM Count XML attributes function crashes certain version of 4th
Dimension when called on the #document element, a special information-only
node above the root of the XML tree. Consequently, the database provides a
function named DOM_CountAttributes as a safe alternative to the native
function.

Note For more details on handling XML attributes, see Technical Note xx-xx,
Enhanced Tools for Reading XML Attributes.

Method Documentation
------------------------------------------------------------------------------------------------------------------------------------------------

DOM_AttributesToArrays
DOM_AttributesToArrays (Alpha [16];Pointer;Pointer)
DOM_AttributesToArrays (XML reference;->Names array;->Values array)

This routine copies the attributes of an XML node into a pair of text arrays.

Note: The routine does not accept string arrays in the place of text arrays.

DOM_CountAttributes
DOM_CountAttributes (Alpha [16]) : Longint
DOM_CountAttributes (XML reference) : Count of attributes

This routine counts the number of attributes associated with an XML element.
It enhances the behavior of DOM Count XML attributes with automatic
error handling and avoiding reading the attributes of illegal nodes.

DOM_CountElementByName
DOM_CountElementByName (Alpha [16];Text;{Longint}) : Longint
DOM_CountElementByName (XML reference;Target element name;{Element
to find max}) : Count of matching elements

This routine counts the number of times an element name appears in an XML
tree. The optional Element to find max supports stopping the count when a
specific instance is reached. The default value for this optional parameter is
MAXLONG.



DOM_ElementExists
DOM_ElementExists (Alpha [16];Text;{Longint}) : Boolean
DOM_ElementExists (XML reference;Target element name;{Instance to
find}) : Returns True if the requested instance exists.

This routine tests if an element exists within an XML tree. The optional
Instance to find parameter supports finding a specific instance of an element
name. The default value for this optional parameter is 1.

DOM_FindElementByName
DOM_FindElementByName (Alpha [16];Text;Longint) : Alpha [16]
DOM_FindElementByName (XML reference;Target element name;Instance to
find) : Matching node reference or an empty string.

Finds the requested element within an XML tree and returns its node
reference. The Instance to find parameter supports finding a specific instance of
an element name.

DOM_GetElementName
DOM_GetElementName (Alpha [16]) : Text
DOM_GetElementName (XML reference) : Element name

This routine returns the name of the specified node. It also enhances the
DOM GET XML ELEMENT NAME command with automatic error handling.

DOM_GetElementValue
DOM_GetElementValue (Alpha [16];{Boolean}) : Text
DOM_GetElementValue (XML reference;{Clean whitespace?}) : Element
value

This routine returns the value of the specified node. Additionally, it enhances
the DOM GET XML ELEMENT NAME command with automatic error
handling and optional whitespace cleaning. The default value for the optional
Clean whitespace argument is False.

DOM_ReferenceIsValid
DOM_ReferenceIsValid (Alpha [16]) : Boolean
DOM_ReferenceIsValid (XML reference) : Element reference is valid?

This routine tests if a node reference is valid.

DOM_ReferenceIsValidOnError
This custom error handler is used internally as a custom error handler by the
DOM_ReferenceIsValid routine.

DOM_StartCustomErrorHandling
This routine is used internally to record the current error handler name and
the current value of the Error system variable, as well as to install a custom
error handler.



DOM_StopCustomErrorHandling
This routine is used internally to reverse the operations of the
DOM_StartCustomErrorHandling routine.

String_EqualCaseSensitively
String_EqualCaseSensitively (Text;Text): Boolean
String_EqualCaseSensitively (Base text;Comparison text) : Equal?

This routine tests if two strings/texts are equal case-sensitively. This
functionality is required to compare XML element names, which are always
case-sensitive.

XML_CleanWhitespace
XML_CleanWhitespace (Text) : Text
XML_CleanWhitespace (Source text): Result text

This routine returns the source string without leading or trailing XML
whitespace.

XML_InitWhitespaceCharacters
This routine initializes an array containing the XML whitespace characters.

Summary
------------------------------------------------------------------------------------------------------------------------------------------------

The built-in DOM information reading commands and functions offer a
complete set of features, but they can still be refined with some simple code.
The sample database included with this technical note makes the built-in
commands safer and easier to work with by automatically handling errors on
bad nodes, offering whitespace trimming, and simplifying and improving
access to XML node attributes.


