Handling Web Logins

By David Adams

Technical Note 06-39

Overview

The 4th Dimension Web server provides support for HTTP passwords through
the On Web Authentication database method. Once activated and
configured, this feature automatically sends a challenge whenever a
protected method or other database resource is requested. However, there is
a limitation to this system. If the password window is cancelled, a blank
screen is displayed in the browser. This blank screen is confusing for end
users and makes it look like the Web site has disappeared. Instead of a blank
screen, it is far better to show a page with help text, login hints, links to
other pages on the site, or any other relevant information. Overcoming On
Web Authentication's default behavior is not difficult, but it does require
using a different strategy. Instead of using the automatic system,
authentication is performed with a few lines of custom code in On Web
Connection and any methods called through 4DACTION.

This technical note explains why On Web Authentication system works as
it does and describes the replacement Web password system. Included with
this note are two sample databases, Web_Login_Default, which illustrates how
On Web Authentication behaves, and Web_Login_Custom, which
implements the custom solution.

About Web Passwords

To understand On Web Authentication's behavior, it's necessary to explain
how HTTP passwords work. First, consider how password protected Web sites
typically behave when the password dialog is cancelled. As a user, here's
what seems to happen:

1. A page is requested in the browser.
2. The server asks for a user name and password in a dialog.
3. If the password dialog is cancelled, the server sends back an error page.

Internally, the actual steps are different:

1. A page is requested in the browser.
The server sends an HTTP status code of 401 and an error page.

3. The browser understands the 401 status code as an indication that a
user name and password are required.

4. The browser presents a dialog to collect the user name and password.
However, the browser does not display the error page, at this point.

5. If the user cancels the password dialog, the browser displays the error
page returned by the server in the second step.

In case the differences between the apparent and actual steps are unclear,
the significant details are emphasized below:

e The password dialog is displayed and controlled by the browser, not the
server. Therefore, different browsers draw different looking dialogs.

e If the password dialog displayed by the browser is cancelled, there is
no message sent to the Web server. Therefore, the error page must
already be present in the browser.

With these points in mind, let's look at how 4th Dimension works.

4th Dimension's Default Behavior

The On Web Authentication database method is included in every 4th
Dimension database as a place to include Web authentication code. The
method runs whenever a URL or semi-dynamic callback invokes a 4D
method. On Web Authentication automatically receives six text parameters
with various pieces of information related to the Web request. To accept a
request, return True in $0. To send a password challenge to the browser,
return False in $0. The imaginary code below shows how all of this works:

C_BOOLEAN($0;%$acceptConnection_b)
C_TEXT($1) ° ;$url_t)

C_TEXT ($2) ";$httpHeader_t)
C_TEXT ($3) ";$clientlPAddress_t)
C_TEXT ($4) ";$serverlPAddress_t)
C_TEXT ($5;%userName_t)

C_TEXT ($6;$password_t)

$userName_t:=$5
$password_t:=$6

If (WebLoginlsOkay ($userName_t;$password_t)
$acceptConnection_b:=True

Else
$acceptConnection_:=False

End if

$0:=$acceptConnection_b

What happens when $0 is set to False? 4th Dimension terminates processing
the request and returns an HTTP response with the 401 Unauthorized
status. Additionally, it includes the www-Authenticate HTTP header required
for a complete HTTP password challenge response. The HTTP response below
shows exactly what the headers include:

HTTP/1.1 401 Authorization Required.

Server: 4D WebStar D/2004

Date: Tue, 10 Oct 2006 00:21:20 GMT
WWW-Authenticate: Basic realm="Web_Login Default.4DB"

A response with a status of 401 may include a page of content to display if
the password dialog is cancelled, but the response generated by On Web
Authentication includes nothing. Therefore, when a password dialog is
cancelled, there is nothing to display. There is no way to manually add an
error page with the response sent by On Web Authentication. The way
around this limitation is to accept all requests in On Web Authentication
and then handle authentication manually in On Web Connection and/or in
methods called by 4DACTION.

Implementing a Custom Web Password Challenge

Overview
Implementing a custom Web password challenge system in 4th Dimension is
pretty simple. There are only two important tasks involved:

1. Test for passwords, when needed.

2. Send a complete, custom password challenge (HTTP 401) response,
when needed.

Depending on how the database is used over the Web, there are a few ways
to approach these tasks. The strategy implemented in the example database
and discussed in this technical note supports password protecting all non-
contextual access, including requests for individual pages, 4DCGI calls, and
4DACTION calls.

4D Web Server Flow of Control

Internally, the flow of control within the Web server varies slightly amongst
the different non-contextual calling systems, as illustrated in the diagram
below:

Incoming Request

*

Bad URL 4DCGI 4DACTION

S R

On Web Authentication

! | N

Bad URL 4DCGI 4DACTION
On Web Connection Specific Method

Notice that all three request types provoke On Web Authentication and
that 4DAcCTION calls bypass On Web Connection. Therefore, the most
obvious place to put authentication code is in On Web Authentication.
However, it's On Web Authentication's limitations that lead us to build a
custom solution in the first place. If all calls are channeled through On Web
Connection, then authentication can be performed there. However, if some
methods are called through 4DAcCTION, they must handle authentication
individually. Fortunately, none of these steps are hard and all of them are
implemented in the Web_Login_Custom database. We'll look at the code
needed in each location, next.

Customizing On Web Authentication

In the custom Web password solution, On Web Authentication requires a
bit of code to provisionally accept the request and to store the incoming user
name and password for later testing, as shown below (the code in the sample
database is somewhat expanded):

C_BOOLEAN($0;%$acceptConnection_b)
C_TEXT($1;$2;$3;$4;$5;%$6)

* Save user name and password in process variables for 4DACTION methods.
C_TEXT(WebDemo_UserName_t)

C_TEXT(WebDemo_UserPassword_t)

WebDemo_UserName_t:=$5

WebDemo_UserPassword_t:=$6

$0:=True

Returning True, as shown above, bypasses 4th Dimension's automatic
password behavior. Additionally, it allows every Web request through.
Therefore, it is important to test all requests by hand. There are only two
places where testing needs to be done, as mentioned: in On Web
Connection, and in each method called directly by 4DACTION. For sites that

Tip

use 4DCGI instead of 4DACTION, all security testing can be handled in On
Web Connection.

4DACTION offers no meaningful advantages over 4DCGI. in fact, it brings
several disadvantages, for example, actual 4th Dimension method names
being exposed through the Web. Apart from any security consideration, a
corollary of this behavior is that changing the method name in 4th Dimension
breaks all external links.

Customizing On Web Connection
The On Web Connection method runs each time a bad URL or 4DCGI call
are submitted. Below is the code used in the Web_Login_Custom database:

C_TEXT($1;$url_t)

C_TEXT ($2) ;$httpHeader_t)
C_TEXT ($3) ;$clientlPAddress_t)
C_TEXT ($4) ;$serverlPAddress_t)
C_TEXT ($5;$userName_t)
C_TEXT ($6;$password_t)

$url_t:=$1
$userName_t:=$5
$password_t:=$6

If (WebLoginlsRequired ($url_t))
$loginOkay_b:=WebLoginlsOkay ($userName_t;$password_t)
If (Not($loginOkay_b))
WebLoginSendChallenge
End if
End if

If ($loginOkay_b)

Case of
: ($url_t="/protected.html")
SEND HTML FILE("protected/page_reached.html")

: ($url_t="/4DCGI/CallMethodWith4DCGI@")
MethodCalledBy4DCGI

Else
C_TEXT(WebDemo_RequestedURL_t)
WebDemo_RequestedURL_t:=$1" Value is read semi-dynamically by the 404 page.
SEND HTML FILE("not_found.html")
End case

End if
All of the work comes down to three methods, WebLoginIsRequired,

WebLoginIsOkay and WebLoginSendChallenge. None of these methods is
long or complicated.

The WebLoginIsRequired Method

Web sites typically include a mixture of protected and public information. The
WebLoginIsRequired method provides a central location for code to test if a
specific URL requires authentication. Internally, this method uses some
conventions to identify protected resources, as seen in the code below:

C_BOOLEAN($0;$loginRequired_b)
C_TEXT($1;$url_t)

$url_t:=$1
$loginRequired_b:=False

Case of
: ($url_t="/protected@")" Use a password on anything that is in the protected directory.
$loginRequired_b:=True

: ($url_t="/4DCGI@")" Use a password for all 4DCGI calls.
$loginRequired_b:=True

: ($url_t="/4DACTION@") " Use a password for all 4DACTION calls.
$loginRequired_b:=True

Else
$loginRequired_b:=False
End case

$0:=$loginRequired_b

The code from the Web_Login_Custom database, shown above, is little more
than a skeleton. Within a specific database, the logic can be expanded,
refined, and rewritten however is necessary.

The WebLoginIsOkay Method

The WebLoginIsOkay method in the sample database is effectively a stub. All
it does is test if the user name and password provided over the Web match
values hard-coded into the method itself. However, despite its simplicity, the
method is correctly located in the call chain to handle all authentication
tasks. The simplest form of the method is shown below:

C_BOOLEAN($0;$loginlsOkay_b)
C_TEXT($1;$userName_t)
C_TEXT($2;$password_t)

$loginlsOkay_b:=False

If (($userName_t="guest") & ($password_t="4D"))
$loginlsOkay_b:=True
End if

$0:=$loginlsOkay_b
Within a production database, the logic for this method can be expanded, as

needed. For example, the incoming values may need to be tested against
user names and passwords stored in records or external documents.

The version of the method shown above is adequate, if 4DACTION is not used.
However, if 4DACTION is used, the user name and password must be saved
within On Web Authentication for inspection. There are several ways to
code for this situation. The approach used in the sample database is to save
the user name and password in On Web Authentication, as shown earlier,
and then to test these values within WebLoginIsOkay when no parameters
are provided. The expanded version of the method listed below is used in the
sample database:

C_BOOLEAN($0;$loginlsOkay_b)
C_TEXT($1;%userName_t)
C_TEXT($2;$password_t)

$loginlsOkay_b:=False

If (Count parameters=2)
$userName_t:=$1
$password_t:=$2
Else
" The user name and password are saved in On Web Authentication.
If (Undefined(WebDemo_UserName_t))"~ This shouldn't happen.
WebDemo_UserName_t:=""
End if
If (Undefined(WebDemo_UserPassword_t))" This shouldn't happen.
WebDemo_UserPassword_t:=""
End if

$userName_t:=WebDemo_UserName_t
$password_t:=WebDemo_UserPassword_t

End if

If (($userName_t="guest") &($password_t="4D"))
$loginlsOkay_b:=True
End if

$0:=$loginlsOkay_b

This version of the method can now handle authentication requests from On
Web Connection or any method called by 4DACTION. Since the user name
and password are already being stored by On Web Authentication, some
developers may wish to simplify the method as follows:

C_BOOLEAN($0;$loginlsOkay_b)
C_TEXT($1;$userName_t)
C_TEXT($2;$password_t)

$loginlsOkay_b:=False

* The user name and password are saved in On Web Authentication.

If (Undefined(WebDemo_UserName_t))~ This shouldn't happen.
WebDemo_UserName_t:=""

End if

If (Undefined(WebDemo_UserPassword_t))" This shouldn't happen.

WebDemo_UserPassword_t:=
End if

If ((WebDemo_UserName_t="guest") & (WebDemo_UserPassword_t="4D"))
$loginlsOkay_b:=True
End if

$0:=$loginlsOkay_b

The WebLoginSendChallenge Method

The code for the WebLoginSendChallenge may look a bit complex but,
ultimately, it simply sets the HTTP header values needed to provoke an HTTP
password challenge and adds the text of an error page. The complete code
for the method is listed below:

ARRAY TEXT(WebDemo_HttpHeaderNames_at;3)

ARRAY TEXT(WebDemo_HttpHeaderValues_at;3)
WebDemo_HttpHeaderNames_at{1}:="X-VERSION"" This must be the first item in the array.
WebDemo_HttpHeaderValues_at{1}:="1.1"

WebDemo_HttpHeaderNames_at{2}:="X-STATUS" " This must be the second item in the array.
WebDemo_HttpHeaderValues_at{2}:="401"" Not Authorized. This signals the browser to ask for a
password.

C_TEXT($realm_text)

* This information is required for a password challenge,

" but you can change the realm name to match your system.
$realm_text:=""" For example: Basic realm="Web Login Demo"
$realm_text:=$realm_text+"Basic realm="
$realm_text:=$realm_text+Char(Double guote)
$realm_text:=$realm_text+"Web Login Demo"
$realm_text:=$realm_text+Char(Double guote)

WebDemo_HttpHeaderNames_at{3}:="WWW-Authenticate"
WebDemo_HttpHeaderValues_at{3}:=$realm_text

SET HTTP HEADER(WebDemo_HttpHeaderNames_at;WebDemo_HttpHeaderValues_at)
SEND HTML FILE("password_challenge.html")

The HTTP/HTML capture listing below shows the output produced by the code
shown above. The bulk of the output, starting from <!DOCTYPE HTML, are the
contents of the password challenge.html document. The header sections
modified by the code above are highlighted below for emphasis:

HTTP/1.1 401 Authorization Required.

Server: 4D WebStar D/2004

Date: Tue, 10 Oct 2006 02:28:11 GMT
WWW-Authenticate: Basic realm="Web Login Demo"
Connection: close

Last-Modified: Tue, 10 Oct 2006 02:28:11 GMT
Expires: Wed, 11 Oct 2006 02:28:11 GMT
Content-Type: text/html;Charset=IS0-8859-1
Content-Length: 1092

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<title>Password Required</title>

<link

rel="Stylesheet"
type="text/css"
title="Styles for 4D Web Log-in Examples"
href="/styles.css"
rev="Stylesheet">

</head>

<body>

<hl>User Name and Password Required</hl>

<p>A user name and password are required to access the requested page or
method. Enter a valid user name and password in the window provided by
the browser. An example of a browser password dialog is shown below:</p>

<img
src="password_ help.jpg"
alt="Password dialog"
width="527"
height="385">

<p>Hint: The user name is guest
and the password is 4D. Remember, that
once a user name and password combination have been accepted, the
browser continues to send them along with every new request. Therefore,
once you enter the name and password listed above, all requests are
accepted until the browser has quit.</p>

<p>Home</p>

</body>
</html>

Authenticating from within 4DACTION Methods

The routines in the sample database are designed to support authentication
from On Web Connection or an individual method. As the flow of control
diagram listed earlier shows, calls to 4DACTION pass through On Web
Authentication and then to the specific method. In the custom database,
the user name and password are saved in process variables known to the
WebLoginIsOkay method; this approach simplifies authentication within
specific methods, as illustrated in the example below:

C_TEXT($0;%$1) "Required for methods called through 4DACTION.

If (WebLoginlsOkay =False)

WebLoginSendChallenge
Else Login good.

SEND HTML FILE("protected/method_ran_through_4daction.html")
End if

On Web Authentication Versus the Custom Solution
The HTTP header output shown above is functionally identical to the headers
produced by the On Web Authentication password challenge. The relevant
sections of the two versions are shown side-by-side below for comparison:

On Web Authentication Custom Solution

HTTP/1.1 401 Authorization Required. HTTP/1.1 401 Authorization Required.
Server: 4D WebStar D/2004 Server: 4D WebStar D/2004
WWW-Authenticate: Basic WWW-Authenticate: Basic realm="Web
realm="Web_Login_Default.4DB" Login Demo"

The only difference between the two is the name of the realm. In the custom
solution, the realm name is freely configurable. In the On Web
Authentication version, the realm name is automatically built from the
database structure name. The meaningful difference between the two is what
follows. In the case of On Web Authentication, nothing follows. With the
custom solution, a full page of information follows. Then, if the password
dialog is cancelled in the browser, the page included with the challenge is
shown. Below is an illustration of the error page produced by the sample

database:
@ b 2 ‘;1 http: //192.168. 1. 102 jprotected .htm ;] s A |

S
v v o

§ f @ password Requred I |

User Name and Password Required

A user name and password are required to access the requested page or method.
Enter a valid user name and password in the window provided by the browser. An
example of a browser password dialog is shown below:

21

D

The server 192.168.1.102 at Web_Login_Defauit. 408
requires a username and password.

Warning: This server is requesting that your username and
password be sent in an nsecre manner (basic authentication
without a secure connection).

\Jser name: [ﬁ | L}“

-

Enter valid name

Password: [Enter valid password

[T Remember my password

coce|

Hint: The user name is gu=st and the password is 40. Remember, that once a user
name and password combination have been accepted, the browser continues to send
them along with every new request. Therefore, once you enter the name and passwor
listed above, all requests are accepted until the browser is quit.

nome

Done 9 Internet

Note

Additional Notes on Web Passwords

Web Passwords Are Not Secure

This following point cannot be overemphasized: Web passwords are not
secure. This is not a bug, it's how the HTTP system was originally designed.
When a user name and password are submitted, they are combined together
and converted to base64. For example, the user name guest with the
password 4D are transmitted as follows:

Authorization: Basic Z3V1c3Q6NEQ=

The string Z3V1c3Q6NEQ= is a base64 version of the string guest:4D. There is
no encryption involved in HTTP Basic authentication at any point.
Furthermore, once the password is accepted, any pages or other documents
sent over the network are not secured. If a site needs encryption, use SSL
(HTTPS).

Do Not Use 4D Passwords Over the Web

The 4th Dimension Web server password includes several options within the
Database Preferences dialog on the Web > Advanced page, pictured below:

\Web Passwords

[v UsePasswords [T Indude 4D Passwords

Generic Web User: lDemgner _:J

If the Use Passwords option is selected, the Include 4D Passwords option may
also be selected. In this case, 4th Dimension's automatic Web password
system can compare incoming Web user names and passwords against 4D
user names and passwords. Given that Web passwords are not secure, using
this feature makes 4D passwords insecure. This situation is particularly
dangerous in a mixed Web/4D Client environment. Exposing real

4th Dimension user names and passwords over the Web exposes credentials
that can then be used to connect with 4D Client.

The Use Passwords option is required by the custom Web password system
described in this technical note.

Browsers Remember Web Passwords

The Web is a stateless protocol, meaning no information is retained between
requests. Therefore, if a Web site requires a password, the password must be
sent in with each and every request. Yet, it's normal to enter a user name
and password once at a site and then browse freely. To improve the user
experience, the browser creates the illusion that a password is only required

Tip

once. Internally, the browser remembers the user name and password and
continues to send them with each new request, typically for as long as the
browser remains open. If you're testing Web passwords, keep this point in
mind. Sometimes, it's necessary to quit the browser and restart to continue
testing. Another development strategy is to run multiple browsers to avoid
having to quit one browser repeatedly.

The indispensable Web Developer Firefox extension, available at
http://chrispederick.com/work/webdeveloper/, can clear HTTP passwords on
the fly. Look for the Miscellaneous > Clear Private Data > Clear HTTP Authentication
option.

Case-Sensitivity Is Optional

It is up to each individual Web site to decide if user names and passwords
should be handled case-sensitively or not. Within 4th Dimension, it is
sometimes awkward to compare strings case-sensitively. For details on
adding case-sensitivity to 4th Dimension projects, see 4D Technical Note 05-
41, "Case-Sensitive Operations in 4th Dimension." The sample database
includes a variety of read-to-use methods, including a case-sensitive string
comparison routine named CS_AlphasAreEqual.

Summary

The 4" Dimension Web server provides automatic support for HTTP
passwords through the On Web Authentication method. However, this
feature doesn't support including an error page to display in case the
password dialog is cancelled. Fortunately, this limitation is easily corrected by
adding a short piece of custom code to On Web Connection and any
method called directly through 4DACTION.

