
Building a REST Client

By Yvan Ayaay, Technical Support Engineer, 4D Inc.
TN 06-30

Introduction
--

Many sites such as Yahoo, Ebay, and Amazon.com offers REST developer interface for
their Web Services. Usually, they provide this as another option besides the SOAP
version of their web services. Representational State Transfer (REST) is a simple web-
based interface that uses XML over HTTP. A REST-based web service interacts with a
request based on the URL submitted. But unlike SOAP Web Services, it is not a
standard. It is an architectural style for distributed computing like the World Wide
Web. The Web Services Wizard of 4D cannot discover nor call with 4D web services
commands these services. In this technote, it will be shown how to build a REST client
which calls a REST web service and process its response within 4D. A REST client to
query Yahoo Web Search will be constructed to illustrate this.

What is REST?
--

Representational State Transfer (REST) is an architectural approach to distributed
computing such as the World Wide Web. REST came out of Roy Fielding’s, one of the
main authors of the HTTP specification, exposition of the architectural principle of the
web. It is eminent that client requests on the web are comprised of resources (URLs).
Each response to a client request can be considered a resource representation which
sets the client application in a state. And as client traverses a link or make another
request, another resource representation is accessed. This changes the state of the
client application. The term REST was derived from this concept of state transition.
Basically, a web application interacts with a resource by sending a response based on
the identifier of the resource (URL) and the action required (GET, POST) in the client’s
request. REST web services are constructed and made available based on this
principle.

REST-based web service is a simple web-based interface that uses HTTP and XML
without the extra abstractions of standardized pattern such as the Web Service SOAP
protocol. Even though REST is not a standard, it basically utilizes the following
standards:

 HTTP

 URL

 XML

Based on the URL, a service returns a response in XML through HTTP. For example, an
HTTP GET request on the URL http://www.myRESTExample.org/Employee?city=San+Jose

will return an XML with a list of employees living in the city of San Jose.
REST is designed differently from SOAP. One difference is the emphasis in identifying
their services. REST emphasizes the resource while SOAP emphasizes the operation.
Thus, most services in REST are nouns (e.g. city) while most services in SOAP are
verbs (e.g. getCity).

A REST service has the following characteristics:

 Client-Server approach - a REST request from the client is made which is
processed by the REST web service on the server.

 Stateless - each REST request contains all information necessary for it to be
processed.

 Resources are universally identified - the service contains resources which are
named using a URL. These resources can be accessed through HTTP methods
such as GET, POST, etc.

 Traversal resource representation - the representations of the resources allow
traversal to another resource.

In this technote, a REST client will be constructed. It will query Yahoo Web Search
web service and process its result.

Note: For more information about REST, check this link:
http://en.wikipedia.org/wiki/REST

Constructing REST Client
--

REST-based web services cannot be discovered using the Web Services Wizard nor
can they be called by 4D Web Services commands. REST requests are HTTP requests
and the response of a REST service is in XML. In order to access a REST service, an
HTTP request needs to be manually constructed within 4D. The 4D Internet
Commands allows establishing a TCP connection to the server, and sending and
retrieving data. Hence to build a REST client, an HTTP request (sent through GET or
POST method) will be constructed and its response retrieved using 4D IC commands
and the XML response will then be parsed using 4D XML commands. The sections
below describe how to create a request to Yahoo Web Search service and how to
parse its results.

Constructing a REST Request

Yahoo offers REST-based web services to developers such as Yahoo Web Search,
Yahoo maps, Yahoo Traffic, Flickr, etc. In their website, the specifications of these
APIs are listed (http://developer.yahoo.com/). To access these services in 4D, an
HTTP request will have to be constructed in 4D. A request that queries the Yahoo Web
Search service will be constructed to illustrate how to do this.

Below are the specifications of the Yahoo Web Search API:
 (http://developer.yahoo.com/search/web/V1/webSearch.html)

 Yahoo Web Service: Web Search
The Web Search service allows you to search the Internet for web pages via REST.

 Request URL

http://api.search.yahoo.com/WebSearchService/V1/webSearch

 Request Parameters

Parameter Value Description

appid string (required) The application ID.

query string (required) The query to search for (UTF-8 encoded). This query supports the full
search language of Yahoo! Search, including meta keywords

region string: default us The regional search engine on which the service performs the search.

type all (default), any, or
phrase

 The kind of search to submit:
• all returns results with all query terms.
• any returns results with one or more of the query terms.
• phrase returns results containing the query terms as a phrase.

results integer: default 10,
max 100

The number of results to return.

start integer: default 1 The starting result position to return (1-based). The finishing position
(start + results - 1) cannot exceed 1000.

format any (default), html,
msword, pdf, ppt,
rss, txt, xls

Specifies the kind of file to search for.

Adult_ok no value (default), or
1

Specifies whether to allow results with adult content. Enter a 1 to allow
adult content.

similar_ok no value (default), or
1

Specifies whether to allow multiple results with similar content. Enter a
1 to allow similar content.

language string: default no
value (all languages)

The language the results are written in.

country string: default no
value

The country in which to restrict your search results. Only results on web
sites within this country are returned.

site string: default no
value

A domain to restrict your searches to (e.g. www.yahoo.com). You may
submit up to 30 values (site=www.yahoo.com&site=www.cnn.com).

subscription string: default no
value

Any subscriptions to premium content that should also be searched.
You may submit multiple values.

license any (default),
cc_any,
cc_commercial,
cc_modifiable

The Creative Common Licenses that the contents are licensed under.
You may submit multiple values (e.g.
license=cc_commercial&license=cc_modifiable).

output string: xml (default),
json, php

The format for the output.

callback string The name of the callback function to wrap around the JSON data. The
following characters are allowed: A-Z a-z 0-9 . [] and _. If output=json
has not been requested, this parameter has no effect. More information
on the callback can be found in the

 Response fields of the XML returned:

Field Description
ResultSet Contains all of the query responses. Has attributes:

• totalResultsAvailable: The number of query matches in the database.
• totalResultsReturned: The number of query matches returned. This may be lower than
the number of results requested if there were fewer total results available.
• firstResultPosition: The position of the first result in the overall search.

Result Contains each individual response.

Title The title of the web page.

Summary Summary text associated with the web page.

Url The URL for the web page.

ClickUrl The URL for linking to the page..

MimeType The MIME type of the page

ModificationDate The date the page was last modified, in unix timestamp format.

Cache The URL of the cached result, and its size in bytes.

For example, when performing a web search for George W. Bush, the URL request
appears as shown below:
http://api.search.yahoo.com/WebSearchService/V1/webSearch?appid=Test4DREST&query
=George+W.+Bush&results=2

This URL can easily be constructed and then sent to server within 4D using 4D
Internet commands. Notice the application ID (appid) ‘Test4DREST’ inserted before
the query in the request string. To access Yahoo Webservices, a user will need to get
an application ID
(http://login.yahoo.com/?.done=http://api.search.yahoo.com/webservices/register_a
pplication) that uniquely identifies a user’s application. The method below shows how
to construct the above URL request (with any other subject to search) and retrieve the
result from the REST service:

 `Method: GetResultYahoo
 `Description: This method construct the http GET request and sends it to the server. It then retrieves the
result of the web service and returns it.
 ` Parameters: The subject to be searched is passed as the first parameter and the number of results is the
second parameter.

C_TEXT($Text;hostname)
C_LONGINT($Status;TCPID;vIPPort_Remote;$err)
C_TEXT($1;request_String)
C_BLOB($0;$result;$buffer)
C_LONGINT($2)

vIPPort_Remote:=80
vIP_Timeout:=10
vIP_Sessionfiltered:=1 `Asynchronous
hostname:="api.search.yahoo.com" `API hostname

$err:=TCP_Open (hostname;vIPPort_Remote;TCPID;vIP_SessionSettings)
$err:=TCP_State (TCPID;$Status)
 `build http request
request_String:="GET
/WebSearchService/V1/webSearch?appid=Test4DREST&query="+$1+"&results="+String($2)
request_String:=request_String+"\n"+"HTTP/1.1"

If ($Status=8) `connection was established
$err:=TCP_Send (TCPID;request_String) `send request

End if

SET BLOB SIZE($result;0)
Repeat ` retrieve result from server

SET BLOB SIZE($buffer;0)
$err:=TCP_ReceiveBLOB (TCPID;$buffer)
$err:=TCP_State (TCPID;vState)
$sizeBuffer:=BLOB size($buffer)
$sizeResult:=BLOB size($result)
 `Append buffer BLOB to result BLOB
INSERT IN BLOB($result;$sizeResult;$sizeBuffer)
COPY BLOB($buffer;$result;0;$sizeResult;$sizeBuffer)

Until ((vState=0) | ($err#0))

$err:=TCP_State (TCPID;$Status)
$err:=TCP_Close (TCPID)
$0:=$result ` return BLOB result

In the method above, a TCP connection is first established. Then, the URL request via
GET method is sent. The parameters, the subject to be searched and the number of
results, are appended to the request string. The request is then sent to the server.
Next, the method waits to receive the entire response. Usually, web servers
automatically close their connections once they have performed their action. Thus, it
goes to a repeat loop until the connection is closed. The retrieved XML result stored in
a BLOB is returned.
The returned result in a BLOB of this method can then be saved into an XML file just
like the method below to be parsed later:

 `Method: P_XMLSave
 ` Description: Save BLOB to an XML file.

C_TIME(vhDoc)

C_BLOB($resultBLOB)
$resultBLOB:=GetResultYahoo(“George W. Bush”;2)
vhDoc:=Create document("ResultREST.xml") ` save result in xml file.
If (OK=1)

CLOSE DOCUMENT(vhDoc) ` Close the document
BLOB TO DOCUMENT("ResultREST.xml";$resultBLOB)

End if

A sample XML response from the request above returned by the Yahoo Web Search
web service is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="urn:yahoo:srch"
xsi:schemaLocation="urn:yahoo:srch
http://api.search.yahoo.com/WebSearchService/V1/WebSearchResponse.xsd" type="web"
totalResultsAvailable="44700000" totalResultsReturned="2" firstResultPosition="1"
moreSearch="/WebSearchService/V1/webSearch?query=George+W.+Bush&appid=ivandterrible&regi
on=us">
<Result><Title>President of the United States - George W. Bush</Title><Summary>Takes a look inside the
Oval Office and includes a biography of President Bush, a video tour, information on the latest policy
initiatives. From the official White House
site.</Summary><Url>http://www.whitehouse.gov/president</Url><ClickUrl>http://uk.wrs.yahoo.com/_ylt=
A0Je5VuxjMZE3j4AElDdmMwF;_ylu=X3oDMTB2cXVjNTM5BGNvbG8DdwRsA1dTMQRwb3MDMQRzZWMDc3IEdnR
pZAM-
/SIG=11nmlojnp/EXP=1153949233/**http%3a//www.whitehouse.gov/president</ClickUrl><DisplayUrl>www.
whitehouse.gov/president</DisplayUrl><ModificationDate>1153810800</ModificationDate><MimeType>text
/html</MimeType>
<Cache><Url>http://uk.wrs.yahoo.com/_ylt=A0Je5VuxjMZE3j4AFVDdmMwF;_ylu=X3oDMTBwOHA5a2tvBGNv
bG8DdwRwb3MDMQRzZWMDc3IEdnRpZAM-
/SIG=16n48lrqp/EXP=1153949233/**http%3a//66.218.69.11/search/cache%3fei=UTF-
8%26appid=ivandterrible%26query=George%2bW.%2bBush%26results=2%26u=www.whitehouse.gov/presid
ent%26w=george%2bw%2bbush%26d=RAS9xmP9NKug%26icp=1%26.intl=us</Url><Size>30244</Size></
Cache>
</Result>

<Result><Title>George W. Bush - Wikipedia, the free encyclopedia</Title><Summary>User-created profile of
the 43rd U.S. President, George W. Bush. Includes biographical information, notes on his career, policies, and
legislation.</Summary><Url>http://en.wikipedia.org/wiki/George_W._Bush</Url><ClickUrl>http://uk.wrs.yah
oo.com/_ylt=A0Je5VuxjMZE3j4AF1DdmMwF;_ylu=X3oDMTB2ZjQ4dDExBGNvbG8DdwRsA1dTMQRwb3MDMgRz
ZWMDc3IEdnRpZAM-
/SIG=11v5cqe3m/EXP=1153949233/**http%3a//en.wikipedia.org/wiki/George_W._Bush</ClickUrl><Display
Url>en.wikipedia.org/wiki/George_W._Bush</DisplayUrl><ModificationDate>1153810800</ModificationDate>
<MimeType>text/html</MimeType>
<Cache><Url>http://uk.wrs.yahoo.com/_ylt=A0Je5VuxjMZE3j4AGlDdmMwF;_ylu=X3oDMTBwZG5hOWwzBGNv
bG8DdwRwb3MDMgRzZWMDc3IEdnRpZAM-
/SIG=16vdtetlv/EXP=1153949233/**http%3a//66.218.69.11/search/cache%3fei=UTF-
8%26appid=ivandterrible%26query=George%2bW.%2bBush%26results=2%26u=en.wikipedia.org/wiki/George
_W._Bush%26w=george%2bw%2bbush%26d=UpH_T2P9NKvh%26icp=1%26.intl=us</Url><Size>182348</
Size></Cache>
</Result>

</ResultSet>

Parsing of the XML response

The sample XML response above can be parsed using 4D DOM XML commands. The
method below parses and retrieves all results in the XML response. The results are saved
into a table wherein they can be retrieved and listed. Only the current results of the
search request are saved in the table. Using DOM XML commands, it traverses through the
XML to retrieve the element values of each result. Each result retrieved is saved into a
record created.

 `Method: P_XMLParse
 `Description: This method parses the XML and get all results and then save the current records in the
SearchResult table.

C_STRING(16;$xml_Element_Ref;$xref1)
C_STRING(16;$xTitle;$xSummary;$xUrl;$xClickUrl;$xDisplayUrl)

ALL RECORDS([SearchResult])
LAST RECORD([SearchResult])
 `Delete all current records
For (i;1;Records in selection([SearchResult]))

DELETE RECORD([SearchResult])
PREVIOUS RECORD([SearchResult])

End for

$xml_Ref:=DOM Parse XML source("ResultREST.xml") ` Parse result xml
$xref1:=DOM Find XML element($xml_Ref;"/Result/") ` Find result starting node
While (OK=1) ` Loop until all results are retrieved. The Title, Summary, Url, ClickUrl, and DisplayUrl for each
result are saved in the table.

CREATE RECORD([SearchResult]) ` create a record to save result
$xTitle:=DOM Find XML element($xref1;"/Result/Title")
DOM GET XML ELEMENT VALUE($xTitle;$mTitle)
[SearchResult]Title:=$mTitle
$xSummary:=DOM Find XML element($xref1;"/Result/Summary")
DOM GET XML ELEMENT VALUE($xSummary;$mSummary)
[SearchResult]Summary:=$mSummary
$xUrl:=DOM Find XML element($xref1;"/Result/Url")
DOM GET XML ELEMENT VALUE($xUrl;$mUrl)
[SearchResult]URL:=$mUrl
$xClickUrl:=DOM Find XML element($xref1;"/Result/ClickUrl")
DOM GET XML ELEMENT VALUE($xClickUrl;$mClickUrl)
[SearchResult]ClickUrl:=$mClickUrl
$xDisplayUrl:=DOM Find XML element($xref1;"/Result/DisplayUrl")
DOM GET XML ELEMENT VALUE($xDisplayUrl;$mDisplayUrl)
[SearchResult]DisplayUrl:=$mDisplayUrl
SAVE RECORD([SearchResult])
$xref1:=DOM Get Next sibling XML element($xref1) ` Got to the next result

End while

DOM CLOSE XML($xml_Ref)

Sample Database

The sample database that comes with this technote is the implementation of the REST
Client for Yahoo Web Search. The interface is shown below. The subject is entered in
the Yahoo Search dialog and, then, the search results are displayed. If a listed search
result is double-clicked, the default browser displays the web page of the selected
search result.

Conclusion

REST-based web services can be called within 4D. Since they cannot be discovered
nor can it be called by web services command, REST queries need to be manually
constructed and its response parsed within 4D to be able to build a REST Client. REST
queries are simple HTTP requests that contain enough information that the REST-
based web service server can interact with. An HTTP request can be built using 4D
Internet Commands. With 4D IC, a TCP connection can be established, a request
constructed can be sent, and the result from the REST service response can be
retrieved. The response of REST is usually in XML. Parsing can be done using 4D XML
commands to retrieve the results. This entire approach to build a REST client was
shown in this technote. The Yahoo Web Search service, a REST-based web service,
was queried and its response was parsed.

