
1

The FuzzyTools Component
By David Adams

Technical Note 06-19

Overview
--

Databases are great at finding data, provided you know exactly what you’re looking
for. As an example, consider the names listed below:

David Anders
Davd Anderson
David Andersen

It’s easy enough for the human eye to see that these names are similar. The problem
is, how do you get software to recognize and rank their similarity? Fortunately for us,
large, well-funded organizations such as the US Census Bureau have spent a great
deal of money and effort developing effective fuzzy matching techniques. The
FuzzyTools component brings a suite of fuzzy comparisons tools to 4th Dimension. The
techniques included fall into two categories: 1) phonetic (sounds-like) matching and,
2) string-distance (difference) weighting. Common uses for these tools include the
following:

• Finding possible duplicates based on names or other strings that sound similar.
(Phonetic matching.)

• Looking up records when the user doesn’t know an exact spelling, but only a word's
sound. (Phonetic matching.)

• Finding likely alternatives to a name or other string. (Distance matching.)

• Finding possible duplicates based on typos. (Distance and phonetic matching.)

• Finding possible duplicates based on names or other strings that are relatively
similar. (Distance matching.)

This technical note and its sample database document and demonstrate how to use
the various FuzzyTools routines, while Technical Note 06-18 Fuzzy Matching in 4th
Dimension discusses the component's internals in more detail. Technical Note 06-20
Data Cleaning and Deduplication uses the component as part of an approach to
improving data quality.

Note If you want or need to rewrite or extend the existing component, Technical Note 06-
18 Fuzzy Matching in 4th Dimension includes the component's source code.

2

Why a Component?
--

Components provide a way of packaging a collection of 4th Dimension resources for
easy distribution. Some developers avoid building or using components because of
historical problems or because the code of protected methods is not visible once
installed as a component. In counterpoint to these potential drawbacks, packaging the
FuzzyTools code as a component brings the following advantages:

• Reduced Complexity
The source code includes over 70 methods, most of which should not be called
directly. The component exposes roughly 20 methods, greatly reducing the effort of
learning how to use the tool.

• Simplified Updating
Using a component makes it easy to keep the FuzzyTools code up to date in multiple
systems.

• Efficient Error Testing
Internally, the fuzzy functions need to test that parameters, such as pointers and
selector strings, are valid. Requiring each low-level method to performs these
checks makes each low-level routine larger and more complex. Instead, a
consolidated "gateway" routine handles parameter testing and other error checking
thoroughly. If all of the inputs and preconditions are correct, then a private, low-
level routine is called. Since all calls to the private routine are through a gatekeeper,
the low-level routines don't need to do any testing of preconditions or parameters.
This architecture reduces code bulk and complexity while preserving the benefits of
rigorous error checking.

Note The component consists entirely of project methods and doesn't add, require, link to,
or alter any other resources.

Compilation
--

The code in the FuzzyTools component is designed to be run compiled, not
interpreted. The component includes complete declarations for all variables, arrays,
and parameters used. You may compile with any of 4th Dimensions compilation
options, including "all variables are typed".

Internal Documentation
--

Each visible method in the component includes Explorer comments documenting
parameters and providing a relevant code sample. Additionally, the FuzzyTools Read
Me Public method briefly describes and documents each method.

3

About the Sample Database
--

The sample database provided includes four
demonstration screens that let you experiment
with all of the FuzzyTools functions and apply
them to real data. We'll briefly summarize each
demonstration here and document them in more
detail below.

Show Words
The Show Words demonstration lets you see the results of applying all of the phonetic
and distance matching routines to actual values. You can also interactively search,
based on the weighting distance measures. Two sample data sets are included with
the demonstration, one with about 15,000 surnames and another with about 5,000
place names. To get a better sense of how the phonetic and distance weighting tools
in the component work, create a fresh data file and import some values from one of
your systems into the [Sample] table. For the import, prepare a text file with two
columns:

Word Alpha 80
Data_Set_Name Alpha 20

Show People
Roughly 500 people records with 50 duplicate pairs (100 records) are included to
support a demonstration of a duplicate hunting reporting system. This topic is
addressed in more detail in Technical Note 06-20 Data Cleaning and Deduplication.

Compare Strings
This screen lets you enter two strings and calculate their phonetic keys and
similarities, using all of the functions included in the FuzzyTools component.

WordList Utilities
The sample database includes some "word list" utilities not included in the component.
The word list tools are designed to compare two blocks of text based on the
percentage of unique words they share in common. This percentage can be useful for
comparing text or the combined values of several fields, and it is used in the duplicate
hunting reporting system.

Now, let's look at the specific tools in detail. First, we'll review the phonetic matching
features.

Working with Phonetic Keys
--

Supported Phonetic Matching Algorithms
There are a handful of well-known algorithms for generating phonetic keys for English
words, including Soundex, Metaphone, Double-Metaphone, Caverphone, Phonix, and

4

NYIIS. Many of these algorithms have been around for decades or longer and are
available in many variations. The FuzzyTools component method
Fuzzy_GetPhoneticKey supports seven methods, summarized below:

Method Notes
Metaphone4 Produces a Metaphone code of up to four characters.
Metaphone6 Produces a Metaphone code of up to six characters.
Skeleton_Key Produces a skeleton key code of up to ten characters.
Soundex_Knuth Produces a four character Soundex code using code based on

Knuth’s The Art of Computer Programming.
Soundex_Miracode Produces a four character Soundex code based on the manual

system used in the 1910 US Census.
Soundex_Simplifie
d

Produces a four character Soundex code based on the original
system developed by the US Census in the 1880’s.

Soundex_SQLServer Produces a four character Soundex code emulating the behavior
of the SOUNDEX function in MS SQLServer.

We’ll discuss which algorithm to use in more detail shortly, but a good default is
Metaphone4. If you need to retrieve the list of valid algorithm names within your
code, use the Fuzzy_GetPhoneticMethodTypes function:

ARRAY TEXT($phoneticMethodNames_as;0)
Fuzzy_GetPhoneticMethodTypes (->$phoneticMethodNames_as)

Note You may pass a pointer to a string or a text array to Fuzzy_GetPhoneticMethodTypes.
If you pass a string array, be sure the elements are at least 18 characters long.

Selecting a Phonetic Key Algorithm
Since FuzzyTools implements seven phonetic code generating algorithms, an obvious
question is, which one to use? The answer is: “use Metaphone4 or Metaphone6”.
Soundex, in all its variations, is not particularly good. The Soundex code is included
primarily because it is such a well-know algorithm and many existing databases
include soundex encoded data. Unfortunately, Soundex codes produce a high rate of
false-positives. The skeleton key algorithm is, properly speaking, not a phonetic key
generating algorithm at all. It is included largely for comparison as it produces high
levels of false-negatives. Metaphone4 and Metaphone6 use the same code, their only
difference being the maximum length of the code produced. You may find better
results with shorter or longer keys, depending on your data.

Note that all of these phonetic key generating algorithms are based on English
speakers pronouncing written surnames. These algorithms are not likely to perform
well for other languages or even for many variations of English. This subject is
discussed in more detail in Technical Note 06-18 Fuzzy Matching in 4th Dimension.

5

Generating a Phonetic Key with Fuzzy_GetPhoneticKey
Fuzzy_GetPhoneticKey (Alpha 20;Alpha 80): Alpha
Fuzzy_GetPhoneticKey (Algorithm name;Base string): Phonetic code

This routine generates a phonetic ("sounds-like") code for an input string. In $1, pass
the name of one of the supported phonetic key generating algorithms. The sample
code below shows how to call this routine to create a phonetic key for a string stored
in a field.

C_STRING (4;$metaphone4_s)
$metaphone4_s:=Fuzzy_GetPhoneticKey ("Metaphone4";[Sample]Word)

If (FuzzyTools_GetLastPhoneticErrorCode=0) ` No error
 [Sample]Metaphone4:=$metaphone4_s
End if

The length of the result depends on the algorithm selected, as documented below.

Algorithm Result Length
Metaphone4 Up to 4 characters.
Metaphone6 Up to 6 characters.
Skeleton_Key Up to 10 characters.
Soundex_Knuth Exactly 4 characters.
Soundex_Miracode Exactly 4 characters
Soundex_Simplified Exactly 4 characters
Soundex_SQLServer Exactly 4 characters

Tip You can read the available algorithm names with Fuzzy_GetPhoneticMethodTypes.

Reading the Algorithms with Fuzzy_GetPhoneticMethodTypes
Fuzzy_GetPhoneticMethodTypes (Pointer)
Fuzzy_GetPhoneticMethodTypes (->String/text array to receive names)

This routine takes a pointer to a string or text array and populates it with the names
of all implemented algorithms. The Fuzzy_GetPhoneticKey method requires a valid
name.

The example code below shows how to call this routine:

ARRAY TEXT($phoneticMethodNames_at;0)
Fuzzy_GetPhoneticMethodTypes(->$phoneticMethodNames_at)

You may pass in a pointer to a string or text array, but, if you use a string array, be
sure it is at least 18 characters long. For example:

ARRAY STRING(18;$phoneticMethodNames_as;0)
Fuzzy_GetDistanceMethodTypes(->$phoneticMethodNames_as)

6

If you pass in a reference to a string array with shorter elements, you will get runtime
errors in compiled mode. 4th Dimension does not invoke the error handler used by
FuzzyTools in response to this error.

Tip Apart from discovering the valid values for passing to Fuzzy_GetPhoneticKey, the full
list can be useful if, for example, you are building a GUI to test and compare the
various phonetic algorithms when applied to your data.

Phonetic Key Demonstration: Codes and Matches
To get a sense of how phonetic keys look and work, try the Show Words
demonstration in the sample database. The first page of this form shows the sample
word listed along with its phonetic code for each of the seven phonetic algorithms and
the words in the data file that share that phonetic key, as pictured below:

Search for, or scroll through, various words to see how the different algorithms
perform. Ideally, you should import some of your own data. As the example above
illustrates, Metaphone often finds more reasonable matches than Soundex.

Tip Run the database compiled for better performance.

Phonetic Key Error Management
The routines in the FuzzyTools component install a custom error handler before
performing any work. If you have another error handler installed already, it is restored
at the end of any FuzzyTools routine. If an error is encountered by FuzzyTools, the
method that encountered the error and an error code are set. Distinct errors and error
descriptions are stored for fuzzy phonetic and fuzzy distance routines. The fuzzy
phonetics error methods and errors are described below.

7

Fuzzy_GetLastPhoneticErrorCode
Fuzzy_GetLastPhoneticErrorCode (): Longint
Fuzzy_GetLastPhoneticErrorCode (): Error code or 0, if there was no error.

Fuzzy_GetPhoneticErrorText
Fuzzy_GetPhoneticErrorText (Longint): Text
Fuzzy_GetPhoneticErrorText (Error code): Error text

A string translation of any fuzzy phonetics error code can be read using the
Fuzzy_GetPhoneticErrorText function. If you want the text of the last error code set,
call the code shown below:

Fuzzy_GetPhoneticErrorText (Fuzzy_GetLastPhoneticErrorCode)

Defined Error Strings
The table below lists all defined fuzzy phonetic errors.

Error Text
1 Required parameter(s) not passed to Fuzzy_GetPhoneticKey.

2 Bad phonetic key method name type passed to Fuzzy_GetPhoneticKey.

3 Internal error: Phonetic key name method passed to Fuzzy_GetPhoneticKey not
recognized or caught as an error.

4 Calling Fuzzy_GetPhoneticErrorText without the required error code parameter.

5 Required parameter not passed to Fuzzy_GetPhoneticMethodTypes.

6 Bad or nil pointer passed to Fuzzy_GetPhoneticMethodTypes.

7 Pointer to wrong data type passed to Fuzzy_GetPhoneticMethodTypes.

Working with Word Difference Measurements
--

String Difference Algorithm Styles
There are several approaches to quantifying the similarity/difference between two
strings. FuzzyTools implements three different algorithm styles: weighted similarities,
edit distance, and common subsequences. We’ll review these briefly and then
document the methods you can use to apply these features to your data.

Weighting Scoring Algorithms
There are several statistical algorithms for calculating the difference between two
strings. These algorithms are commonly used to compare words in spell-checkers,
strings in databases, and protein chains in DNA analysis software. The FuzzyTools
Fuzzy_GetDistancePercentage method implements four related algorithms developed
by statisticians at the US Census from 1990 and onwards, summarized below:

8

Method Notes/Source
Jaro The most basic algorithm.
Winkler Refines the weight produced by Jaro.
McLaughlin Refines the weight produced by Winkler.
Lynch Refines the weight produced by McLaughlin.

These algorithms have been field-tested and refined on enormous data sets and are
quite robust and powerful.

Edit Distance Algorithms
Another way to quantify the difference between two strings is by counting their
differences, a measurement commonly called an “edit distance”. Edit distances are a
primary tool in spell-checkers and are sometimes used in database comparisons. The
FuzzyTools Fuzzy_GetEditDistanceCount routine implements one of the best-known of
these algorithms, called the "Levenshtein distance". This algorithm returns a count of
how many additions, deletions and substitutions are required to transform one string
into another. The more differences there are between the strings, the more steps are
required to make them identical and, therefore, the higher the distance count.
Identical strings require no transformations and, therefore, return a count of 0. For an
example of two unlike strings, the edit distance between "kitten" and "sitting" is 3:

0 kitten
1 sitten Substitute 's' for 'k'.
2 sittin Substitute 'i' for 'e'.
3 sitting Insert 'g' at the end of the word.

As this example illustrates, the two strings don't need to be of the same length to be
compared. This behavior is shared by all of the FuzzyTools functions. Now let's look at
how common subsequence comparisons work.

Longest Common Subsequence
Another strategy for comparing two strings, or streams of bytes, is called Longest
Common Subsequence, or LCS. This technique is commonly used to compare DNA
sequences, for example. This approach is somewhat similar to finding the longest
matching substring. For example, imagine these two strings:

John Anderson
Jon Anderrsen

If you were finding the longest matching substring, you would end up with the result
highlighted below:

John Anderson
Jon Anderrsen

The substring above is 5 characters long (Ander) out of 13 in the original strings.
Converted to a percentage, that's a similarity of a bit over 38%. Just from looking at

9

the strings, the score seems too low. The LCS algorithm, implemented in FuzzyTools's
Fuzzy_GetLCSLength routine, finds the longest common subsequence instead of the
longest substring. The difference is that a subsequence ignores non-matching
intervening characters. So, in comparing "Jon Anderrsen" to " John Anderson", the
pattern highlighted below registers as a match (the space character matches but can't
be highlighted):

John Anderson
Jon Anderrsen

Notice that Jon and John match because the characters J-o-n appear, in order, within
J-o-h-n. The h in John is simply ignored as a junk character. The longest matching
subsequence, then, is 11 characters long (Jon Andersn), giving us a similarity
percentage of roughly 85%. This score agrees much more closely with how a human
would rank the two strings.

Note The two strings in the example above are the same length only to make the example
easier to follow. In practice, you may compare strings of different lengths with all of
the distance comparison algorithms in FuzzyTools.

Distance Score Examples
The distances scores are easier to understand after looking at some examples. The
Fuzzy_GetDistancePercentage routine always returns a real value between 0 and 1.
Another way to look at these weights is as percentages where 1.00 = 100%
agreement and 0=0% agreement. So, a score of .679 indicates a similarity of 67.9%.
Below are a few sample results based on comparing words to "Adkinson" using the
Lynch algorithm. I’ve translated the scores into percentages (score * 100) for
convenience. I have also added the edit distance counts and LCS lengths for
comparison.

10

W
or
d

S
c
or
e

% E
d
i
t

L
C
S

Notes

Ad
kin
so
n

1
.
0
0
0

1
0
0
.
0

0 8 This is the base word
so you should expect
100% agreement.

Ad
kin
s

0
.
9
5
6

9
5
.
6

2 6 Adkins gets a high
score because it
matches the front of
Adkinson perfectly

At
kin
so
n

0
.
9
4
8

9
4
.
8

1 7 Atkinson deserves a
high score because it
differs from the
original by only one
character: Adkinson

Atc
hin
so
n

0
.
8
8
2

8
8
.
2

3 6

Ap
ple

0
.
5
5
6

5
5
.
6

7 1

Blu
eb
err
y

0
.
0
7
0

7
.
0

9 0 If anything, this
weighted score is too
high.

Note The string comparison algorithms implemented here are not biased towards English
and should work well with any language. However, they may be biased towards left-
to-right word order and may not prove as accurate with right-to-left word order.

Note that the various statistical algorithms implemented in
Fuzzy_GetDistancePercentage are not as simple as the edit distance and LCS
algorithms. Internally, the statistical techniques give preferential weighting to various
factors, such as similarities nearer to the front of the word. Therefore, there is a high
but imperfect correlation between edit distance scores and weighted distance scores.

11

As an example, the Lynch algorithm considers “Adkins” more similar to “Adkinson”
than to “Atkinso” while the edit distance algorithm ranks them in the opposite order.
It also makes sense that differences in edit distance counts and LCS lengths are likely
to be more meaningful when comparing longer strings.

Normalizing Similarity Scores
As you may have noticed in the example above, the three different algorithm types
produce different scores on different scales sometimes running in opposite directions
on the number line, as summarized below:

12

S
t
r
a
t
e
g
y

M
et
h
o
d

O
u
t
p
u
t

I
d
e
n
t
i
c
a
l

S
t
a
t
i
s
t
i
c
a
l
S
i
m
i
l
a
r
i
t
y

F
uz
zy
_
G
et
Di
st
a
nc
e
P
er
ce
nt
a
g
e

R
e
a
l

f
r
o
m

0
-
1

1

E
d
i
t
D
i
s
t
a
n
c
e

F
uz
zy
_
G
et
E
di
t
Di
st
a
nc
e
C
o
u
nt

L
o
n
g
i
n
t

c
o
u
n
t

0

13

nt

L
o
n
g
e
s
t
C
o
m
m
o
n

S
u
b
s
e
q
u
e
n
c
e

F
uz
zy
_
G
et
L
C
S
Le
n
gt
h

L
o
n
g
i
n
t

l
e
n
g
t
h

S
t
r
i
n
g

l
e
n
g
t
h

The scales used by Fuzzy_GetEditDistanceCount returns a longint count,
Fuzzy_GetLCSLength returns a longint length, and Fuzzy_GetDistancePercentage
returns a real percentage. Each of these approaches makes sense for their respective
algorithms but can cause confusion when a developer is working with scores. To
simplify the system, the Fuzzy_GetDistancePercentage routine can produce any of the
six possible scores (Jaro, Winkler, McLaughlin, Lynch, Edit, and LCS) as a percentage.
Internally, raw edit distance and LCS scores are converted into a percentage to make
them comparable with the results from the statistical functions. This common scoring
strategy makes it a lot easier to compare the different tools and to use them together.
This feature is particularly handy when calling Fuzzy_FindByDistancePercentage, which
always expects a percentage. You still have access to raw edit distance and LCS
scores and the routines to convert them to percentages them, if you prefer.

Tip: Compare Strings Demonstration
It's always easier to understand how things work by using them yourself. The sample
database demonstrations include many string comparison tools, including a screen
that lets you enter any two strings and compare them with all of the methods,
pictured below:

14

The Show Words demonstration's input screen also includes distance calculation and
find-by-distance routines, discussed later.

Selecting a Distance Measurement Algorithm
An obvious question to ask now is, which distance measurement is best? Internally, all
four weighted algorithms are closely related. Jaro is the simplest, Winkler refines Jaro,
McLaughlin refines Winkler, and Lynch refines McLaughlin. Therefore, the most refined
weighting algorithm is Lynch, a good bet for your default approach to weighted
results. Depending on your data and how you approach setting thresholds, using the
edit distance or the LCS count may be quicker and no less effective. The different
algorithms produce different results and, therefore, match different related values.
The example below is based on the surnames data set in the sample database.
Starting with the last name “Zysko”, below are the surnames that match based on a
threshold of 80%:

15

M
e
t
h
o
d

J
a
r
o

L
y
n
c
h

M
c
L
a
u
g
h
l
i
n

W
i
n
k
l
e
r

E
d
i
t

L
C
S

M
a
t
c
h
e
s

2 5 3 3 2 2

Z
y
s
k
o

Z
y
s
k
o

Z
y
s
k
o

Z
y
s
k
o

Z
y
s
k
o

Z
y
s
k
o

Z
k
s
k
o

Z
k
s
k
o

Z
k
s
k
o

Z
k
s
k
o

Z
k
s
k
o

Z
k
s
k
o

Z
y
k
i

Z
y
k
i

Z
y
k
i

R
i
s
k
o
S
y
k
o
r

As you can see from this sample, you can get very different results from the various
algorithms. The six different algorithms locate six possible matching names, but no
one algorithm finds all of them. Depending on your data, you may find one approach
works far better than another or, more likely, that using a combination of approaches
delivers the best results. A common strategy is to use the Metaphone phonetic
matching algorithm to find likely matches and then use the edit distance or Lynch

16

weighting algorithms to sort the possible matches. The benefit of this approach is that
Metaphone codes are short, easily indexed strings, perfect for fast searches.

The best way to find out what approach works best is to test your own data. The
sample database is designed with this purpose in mind and includes several screens,
discussed below, that let you experiment easily with the different tools. Below we'll
look at how to use the tools in more detail.

Tip If you have a good idea of how long your comparison strings are and how similar they
should be, try calling Fuzzy_FindByEditDistanceCount or Fuzzy_FindByLCSLength
directly with raw values. In some cases, this routine is significantly faster than calling
Fuzzy_FindByDistancePercentage with a percentage.

Generating a Distance Weight with Fuzzy_GetDistancePercentage

This routine calculates the distance between two strings. This is a weighted measure
of how closely the two strings resemble each other. A result of 1 indicates "strings
considered identical" and a result of 0 indicates "strings considered entirely different".
Therefore, higher scores indicate a higher degree of similarity and lower scores
indicate a lower degree of similarity.

In $1, pass the name of one of the supported distance calculating algorithms:

Jaro
Lynch
McLaughlin
Winkler
Edit
LCS

The example below illustrates how to use this routine:

C_REAL($distance_weight)
$distance_weight:=Fuzzy_GetDistancePercentage ("Lynch";massey";"massie")

After calling the code shown above, $distance_weight contains the value 0.953. This
score makes sense as "massey" and "massie" are very similar but not exactly the
same. The edit and LCS methods are included as a convenience. Internally, edit
distances is calculated by Fuzzy_GetEditDistanceCount and LCS is calculated by
Fuzzy_GetLCSLength.

If you need to retrieve the list of valid algorithm names within the code, use the
Fuzzy_GetDistanceMethodTypes function, as illustrated below:

ARRAY TEXT($distanceMethodNames_as;0)
Fuzzy_GetDistanceMethodTypes(->$distanceMethodNames_as)

17

Note See also the discussions of Fuzzy_GetEditDistanceCount and Fuzzy_GetLCSLength.

Generating a Distance Count with Fuzzy_GetEditDistanceCount
Fuzzy_GetEditDistanceCount (Alpha 80; Alpha 80): Longint
Fuzzy_GetEditDistanceCount (Base string;Comparison string): Count

This routine counts the differences between two strings and is a sum of the number of
additions, deletions, and substitutions required to transform one string into another.
Identical strings receive a score of 0 for “no transformations required”. Two entirely
unlike strings receive a score equal to the longest string. Strings with some similarity
receive a score between zero and the length of the longest string. Therefore, higher
scores indicated a lower degree of similarity, and lower scores signify a higher degree
of similarity. The sample code below shows the routine in use:

C_LONGINT($distance_count)
$distance_count:=Fuzzy_GetEditDistanceCount ("massey";"massie")

After calling the code shown above, $distance_count contains the value 2. This score
makes sense as "massey" needs its last two letters “ey” changed to “ie” to complete
the transformation into “massie”.

Note that Fuzzy_GetEditDistanceCount scores run in the opposite direction to
Fuzzy_GetDistancePercentage. Remember that Fuzzy_GetDistancePercentage can
produce edit distances converted to a standard percentage of similarity. If you want to
convert distance counts to percentages yourself, call Fuzzy_EditDistanceToPercentage.

Generating a Subsequence Length with Fuzzy_GetLCSLength
Fuzzy_GetLCSLength (Alpha 80; Alpha 80): Longint
Fuzzy_GetLCSLength (Base string;Comparison string): Length

This routine counts the longest shared subsequence between two strings. As discussed
above, a subsequence is the longest string of matching characters found between the
two strings, without regard to 'junk' characters. To repeat an earlier example, the two
strings below have an LCS count of 11, the string Jon Andersn, including the space:

John Anderson
Jon Anderrsen

Since an LCS score is a length, the higher the number, the greater the degree of
agreement between the two strings. The sample code below shows the routine in use:

C_LONGINT($lcs_length)
$lcs_length:=Fuzzy_GetEditDistanceCount ("massey";"massie")

After calling the code shown above, $lcs_length contains the value 5. This score
makes sense as the two strings have a common subsequence of masse (massey and
massie).

18

Note that Fuzzy_GetLCSLength returns whole integers, not percentages like
Fuzzy_GetDistancePercentage. Remember that Fuzzy_GetDistancePercentage can
produce LCS lengths converted to a standard percentage of similarity. If you want to
convert LCS lengths to percentages yourself, call Fuzzy_LCSLengthToPercentage.

Reading Algorithm Names with Fuzzy_GetDistanceMethodTypes
Fuzzy_GetDistanceMethodTypes (Pointer)
Fuzzy_GetDistanceMethodTypes (->String/text array to receive names)

The Fuzzy_GetDistancePercentage and Fuzzy_FindByDistancePercentage routines
requires a valid name. Use Fuzzy_GetDistanceMethodTypes to copy the valid selector
strings to a string or text array.

The example code below shows how to call this routine:

ARRAY TEXT($distanceMethodNames_at;0)
Fuzzy_GetDistanceMethodTypes(->$distanceMethodNames_at)

You may pass in a pointer to a string or text array but, if you use a string array, be
sure it is at least 10 characters long. For example:

ARRAY STRING(10;$distanceMethodNames _as;0)
Fuzzy_GetDistanceMethodTypes (->$distanceMethodNames _as)

If you pass in a reference to a string array with shorter elements, you will get runtime
errors in compiled mode. 4th Dimension does not invoke the error handler used by
FuzzyTools in response to this error.

Tip Apart from discovering the valid values for passing to Fuzzy_GetDistancePercentage,
the full list can be useful if, for example, you are building GUI that includes the
distance algorithm as an option.

Distance Measurement Demonstration: Weight and Matches
To get a sense of how the distance measurements look and work, try the Show Words
demonstration in the sample database. This demonstration opens a new process with
a list of sample words. Open any word to view the distance results. The first page,
discussed earlier, lists the seven available phonetic codes and the words that share
each code. The second page consolidates the words matched by any of the seven
phonetic codes and calculates their weights using each of the five distance algorithms,
as illustrated below:

19

The columns towards the left labeled Knuth, Mira, Simple, SQL, Skeleton, Meta4, and
Meta6 indicate with an x if a word was matched by that phonetic algorithm. The
numeric values for each distance calculation, including Jaro, Lynch, McLaughlin,
Winkler, Edit, and LCS are displayed on the right. The edit distance count and LCS
length values are shown as raw scores, by default. Select the Normalize number
scales checkbox to convert these values to percentages.

Some sample data is included for your convenience but you will learn more from
importing and testing your own data. As mentioned earlier, you are best off creating a
fresh data file and importing a list of strings with a “data set name” into the [Sample]
table:

Word Alpha 80
Data_Set_Name Alpha 20

Finding Data with Fuzzy_FindByDistancePercentage

As a convenience, the FuzzyTools component includes a routine for finding strings that
are within a particular degree of similarity to a string based on a weight returned by
Fuzzy_GetDistancePercentage. The arguments are listed below:

20

$1 takes a distance calculating algorithm name, as documented above in
Fuzzy_GetDistancePercentage.

$2 takes a string (alpha 80) that serves as the basis for all comparisons.

$3 takes a pointer to the alpha field to search on. Each value is tested against the
base string.

$4 takes a threshold weight. When the base string is compared with the value in the
record, the values are considered a match if the similarity weight is >= the threshold
weight. The higher you set the threshold, the fewer matches you will get.

Note Remember that weighted distance scores run from 0 for entirely unlike strings
upwards to 1 for identical strings. Higher scores, therefore, match more values.

$5 optionally lets you query the current selection instead of the full table. (By default,
this routine queries the entire table.) Whenever possible, reduce the selection by
some means first before calling this routine. In order to match records, the
routine needs to sequentially test the values of each record in the selection,
potentially a very slow operation.

Tip If you are unsure which algorithm to use, Lynch is a good default.

Note that regardless of where you set the threshold, Fuzzy_FindByDistancePercentage
still needs to compare each record in the selection or table. The overall time to
perform these comparisons depends on the number of records compared, if you are
running compiled, and if you are running under 4D Server. Internally, this routine
uses SELECTION TO ARRAY to save time and reduce network traffic. If the selection
is large, it is read in chunks of 255 values at a time to avoid loading huge arrays.

Finding Data with Fuzzy_FindByEditDistanceCount
Fuzzy_FindByEditDistanceCount (Alpha 80;Pointer;Longint;{Boolean}) : Longint
Fuzzy_FindByEditDistanceCount (Base string;Search field;Threshold;{Query
Selection?}) : Records found

The FuzzyTools component includes this routine for finding strings that are within a
particular distance of a base string based on a ranking from
Fuzzy_GetEditDistanceCount. The arguments are listed below:

$1 takes a string (alpha 80) that serves as the basis for all comparisons.

$2 takes a pointer to the alpha field to search on. Each value is tested against the
base string.

21

$3 takes a threshold count. When the base string is compared with the value in the
record, the values are considered a match if the distance count is <= the threshold
count. The lower you set the threshold, the fewer matches you will get.

Note Remember that edit distance scores run from 0 for identical strings upwards for
increasingly unlike strings. Higher scores, therefore, match fewer values.

$4 optionally lets you query the current selection instead of the full table. (By default,
this routine queries the entire table.) Whenever possible, reduce the selection by
some means first before calling this routine. In order to match records, the
routine needs to sequentially test the values of each record in the selection,
potentially a very slow operation.

Keep in mind that regardless of what value you use as a threshold,
Fuzzy_FindByEditDistanceCount still needs to compare each record in the current
selection or table. The overall time to perform these comparisons depends on the
number of records compared, if you are running compiled, and if you are running
under 4D Server. Internally, this routine uses SELECTION TO ARRAY to save time
and reduce network traffic under 4D Server. If the selection is large, it is read in
chunks of 255 values at a time to avoid loading huge arrays.

Finding Data with Fuzzy_FindByLCSLength
Fuzzy_FindByLCSLength (Alpha 80;Pointer;Longint;{Boolean}) : Longint
Fuzzy_FindByLCSLength (Base string;Search field;Threshold;{Query Selection?}) :
Records found

The FuzzyTools component includes this routine for finding strings that are within a
particular distance from a base string based on a ranking from Fuzzy_GetLCSLength.
The arguments are listed below:

$1 takes a string (alpha 80) that serves as the basis for all comparisons.

$2 takes a pointer to the alpha field to search on. Each value is tested against the
base string.

$3 takes a threshold length. When the base string is compared with the value in the
record, the values are considered a match if the distance count is >= the threshold
length. The lower you set the threshold, the more matches you will get.

Note Remember that LCS scores run from 0 for completely unlike strings upwards for
increasingly similar strings. Higher scores, therefore, match fewer values.

$4 optionally lets you query the current selection instead of the full table. (By default,
this routine queries the entire table.) Whenever possible, reduce the selection by
some means first before calling this routine. In order to match records, the
routine needs to sequentially test the values of each record in the selection,
potentially a very slow operation.

22

Keep in mind that regardless of what value you use as a threshold,
Fuzzy_FindByLCSLength still needs to compare each record in the current selection or
table. The overall time to perform these comparisons depends on the number of
records compared, if you are running compiled, and if you are running under 4D
Server. Internally, this routine uses SELECTION TO ARRAY to save time and reduce
network traffic under 4D Server. If the selection is large, it is read in chunks of 255
values at a time to avoid loading huge arrays.

Checking Search Status with Fuzzy_FindByDistanceGetProgress
Fuzzy_FindByDistanceGetProgress (Longint;Pointer;Pointer)
Fuzzy_FindByDistanceGetProgress (Find process ID;Current record;Total records)

Because part of the operations performed by Fuzzy_FindByDistancePercentage,
Fuzzy_FindByEditDistanceCount, and Fuzzy_FindByLCSLength, are sequential, they
can take a long time. To speed these operation up, run compiled, run in single user,
and reduce the selection. If you have to compare a great many values, it may take
long enough to require a progress indicator. Instead of implementing a full progress
display module, FuzzyTools provides status information on the state of a fuzzy search
for you to use in your own progress system. The FuzzyTools sample database includes
an example of how to integrate these values into a simple progress display, as
illustrated below:

Below the parameters for Fuzzy_FindByDistanceGetProgress are described in more
detail.

$1 is the process ID of the process running the search. Internally, this value serves as
a key into the status tracking data. The system is implemented this way to support
tracking the status of concurrent queries in multiple processes.

$2 takes a pointer to a numeric container for the current record being scanned. In the
demonstration screen pictured above, the value is 1,276.

$3 takes a pointer to a numeric container for the total number of records to be
scanned. In the demonstration screen pictured above, the value is 15,558.

When $2 and $3 both return -1, the search has finished.

Tip Remember that Fuzzy_FindByDistanceGetProgress returns two numbers, not a
progress string. The exact style, formatting, and language used for the progress
system is left to you.

23

Find by Distance Demonstration
To get a sense of how the distance matching system works, try page three of the
Show Words demonstration's input screen, pictured below. This screen lets you search
on-the-fly for words that are greater than or equal to a specific degree of similarity to
the current word. You can search by any of the weighting algorithms, or by all six
available methods at once. (Searching by all methods is, understandably, slower.)

The entry objects on the screen let you select an algorithm and weighted threshold
between 0-1.0 for Fuzzy_FindByDistancePercentage. The screen doesn't provide a way
of calling Fuzzy_FindByEditDistanceCount or Fuzzy_FindByLCSLength directly. If you
press to Find by All Methods, the results change to display the outcome of each of
the six methods, as illustrated below:

24

Be forewarned that this system must perform sequential comparisons and, therefore,
is slow when you have a lot of records. Try running this system in compiled mode for
reasonable performance. Something you should notice is that the phonetic and
distance-calculating algorithms match different records. Likewise, the various distance
algorithms also match different records. The distance-calculating comparisons tend to
find a great many more likely duplicates than the phonetic-code based comparisons.
The advantage of the phonetic codes, however, is that they can be pre-calculated,
stored, and indexed in advance.

Distance Calculation Error Management
The routines in the FuzzyTools component install a custom error handler before
performing any work. If you have another error handler installed already, it is restored
at the end of any FuzzyTools routine. If an error is encountered by FuzzyTools, the
method that encountered the error and an error code are set. Distinct errors and error
descriptions are stored for fuzzy phonetic and fuzzy distance routines. The fuzzy
distance error methods and errors are described below.

Fuzzy_GetLastDistanceErrorCode
Fuzzy_GetLastDistanceErrorCode (): Longint
Fuzzy_GetLastDistanceErrorCode (): Error code or 0, if there was no error.

25

Fuzzy_GetDistanceErrorText
Fuzzy_GetDistanceErrorText (Longint): Text
Fuzzy_GetDistanceErrorText (Error code): Error text

A string translation of any fuzzy phonetics error code can be read using the
Fuzzy_GetDistanceErrorText function. If you want the text of the last error code set,
call the code shown below:

Fuzzy_GetDistanceErrorText (Fuzzy_GetLastDistanceErrorCode)

Defined Error Strings
The table below lists all defined fuzzy distance errors.

Error Text
1 Required parameter(s) not passed to Fuzzy_GetDistancePercentage.
2 Bad distance calculation method type passed to Fuzzy_GetDistancePercentage.
3 Internal error: Distance calculation method passed to Fuzzy_GetDistancePercentage not recognized

or caught as an error.
4 Calling Fuzzy_GetDistanceErrorText without the required error code parameter.
5 Required parameter not passed to Fuzzy_GetDistanceMethodTypes.
6 Bad or nil pointer passed to Fuzzy_GetDistanceMethodTypes.
7 Pointer to wrong data type passed to Fuzzy_GetDistanceMethodTypes.
8 Required parameter(s) not passed to Fuzzy_FindByDistancePercentage.
9 Bad distance calculation method type passed to Fuzzy_FindByDistancePercentage.
10 Bad or nil pointer passed to Fuzzy_FindByDistancePercentage.
11 Pointer to wrong data type passed to Fuzzy_FindByDistancePercentage. String field pointer

expected.
12 Empty base word passed to Fuzzy_FindByDistancePercentage.
13 Out of range threshold weight passed to Fuzzy_FindByDistancePercentage. A real between 0 and 1

expected.
14 Internal error: Distance calculation method passed to Fuzzy_FindByDistancePercentage not

recognized or caught as an error.
15 Required parameter not passed to Fuzzy_FindByDistanceGetProgress.
16 Bad or nil pointer passed to Fuzzy_FindByDistanceGetProgress.
17 Pointer to wrong data type passed to Fuzzy_FindByDistanceGetProgress.
18 Required parameter(s) not passed to Fuzzy_FindByEditDistanceCount.
19 Bad or nil pointer passed to Fuzzy_FindByEditDistanceCount.
20 Pointer to wrong data type passed to Fuzzy_FindByEditDistanceCount. String field pointer expected.
21 Empty base word passed to Fuzzy_FindByEditDistanceCount.
22 Out of range threshold distance passed to Fuzzy_FindByEditDistanceCount. A longint of 0 or higher

expected.
23 Required parameter(s) not passed to Fuzzy_GetEditDistanceCount.
24 Required parameter(s) not passed to Fuzzy_GetLCSLength.
25 Required parameter(s) not passed to Fuzzy_FindByLCSLength.
26 Bad or nil pointer passed to Fuzzy_FindByLCSLength.
27 Pointer to wrong data type passed to Fuzzy_FindByLCSLength. String field pointer expected.
28 Empty base word passed to Fuzzy_FindByLCSLength.
29 Out of range threshold distance passed to Fuzzy_FindByLCSLength. A longint of 0 or higher

expected.
30 Required parameter(s) not passed to Fuzzy_GetEditDistanceCountAsPercent.
31 Bad value passed to Fuzzy_GetEditDistanceCountAsPercent. Non-negative integer expected.
32 Required parameter(s) not passed to Fuzzy_GetLCSAsPercent.
33 Bad value passed to Fuzzy_GetLCSAsPercent. Non-negative integer expected.

26

Fuzzy Matching Duplicate Records
--

Finding duplicate records is the primary reason to use fuzzy matching in a typical
database. This subject is examined in Technical Note 06-20 Data Cleaning and
Deduplication. If you want to get an idea of what kind of results fuzzy matching can
deliver, open the Show People demonstration in the sample database. The [Person]
table includes 500 records of which 50 pairs (100 records) are duplicates. Press the
“Report Duplicates” button to start a duplicate comparison process. When the
duplicate checking code finishes, a results window appears with a textual summary of
the comparisons performed and any duplicates found. A sample of the report's output,
formatted for clarity, is shown below:

--
Possible Duplicates Report
--

Seconds taken: 321
Records tested: 500
Record comparisons: 124,750
Possible duplicate pairs: 53

Values are sorted by similarity weight.

A Note About WordList Scores:
When a possible duplicate is found, a WordList comparison percentage is calculated and
included in the results for reference. In this example, the score is derived from the
percentage of common words in the combined values of the First_Name, Last_Name, Street,
and ZIP_Code fields.

Possible duplicate record pair #1
Overall similarity score: 165
WordList similarity score: 100.00%

ID: 246 218
First: Sawyer Sawyer
Last: McDonald McDonald
Street: 201 Lake Rd. 201 Lake Rd.
Zip: 19859 19859
Phone: 369-601-7741 369-601-7741
Email: Sawyer.McDonald@hotmail.com Sawyer.McDonald@hotmail.cOm

Tip Remember that comparing 500 records can take some time, so run the demonstration
compiled.

Summary
--

The FuzzyTools component implements a variety of phonetic and string-difference
measurement algorithms to assist developers needing phonetic lookups or fuzzy
comparisons for data matching. The internals of the component are explained in more
detail in Technical Note 06-18 Fuzzy Matching in 4th Dimension and ideas for how
to use fuzzy matching to improve data quality are discussed in Technical Note 06-20
Data Cleaning and Deduplication. A sample database is provided that illustrates
the component's features and provides a test-bed for experimenting with data from
your own systems.

