Comparison Operators

By: Robert Molina, Technical Support Engineer, 4D Inc.
TN 06-15

ABSTRACT

Comparison operators are essential in any high level programming language.
These operators play a major role in allowing comparison of data of the same
type. The 4" Dimension language supports the following 4D data types to be
used with comparison operators.

» String

* Numeric
e Date

e Time

* Pointer

This technical note will give a refresher course of what are comparison
operators, how they are used in a conditional statement, and how they are
used with 4D data types.

INTRODUCTION

The first time we probably saw comparison operator symbols was in grade
school. During that time teachers tried to find creative ways in trying to
teach how these symbols were to be used. For instance, my teacher would
hand out worksheets displaying the symbols (<,>) as alligator jaws. It was
the job of the students to direct these symbols (alligator jaws), towards a
number on the left or to the right of it. Because most have the understanding
that an alligator has a large mouth, it would probably have room to fit a
larger number. With this intuition, most students learned to place the
opening of the symbols (<,>) towards the larger number. Little did I know
that later in life that these alligator jaws would be used commonly in
computer programming.

The alligator jaws(<,>) are formally known as less than and greater than
symbols. They are a subset of what is known as Comparison Operators.
Below is the list of Comparison Operators used with 4™ Dimension.

Operation Operator
Equality
Inequality
Less Than
Greater Than
Greater Than or Equal To
Less Than or Equal To

Fig. 1

VA [

The equality operator (=) basically allows to check if 2 sets of data are the
same or equal.

NOTE:

One thing to note about the symbol (=) in 4" Dimension is that it will not be
mistaken as an assignment operator. 4" Dimension uses (:=) to assign
values to variables and fields. In other languages the (=) is an assignment
operator. For instance, in C++ you can have the following in your
conditional statement (varl = var2). Instead of comparing varl and var2,
var2’s value gets assigned to varl. In 4" Dimension, you will not encounter
this problem.

The inequality operator (#) is just the opposite of the equality operator. It
helps determine if 2 sets of data are not equal.

The less than and greater than operators (<,>) are basically the same
operator. The main difference is the point of direction. If pointing to the left
(opening to the right) the data on the left is said to be less than the data to
the right. If pointing to the right (opening to the left) the data on the left is
said to be greater than the data on the left.

The less than and greater than operators can be used in conjunction with the
equality operator. The combination of the two operators checks for 2
conditions.

* (<=) Checks to see if data on the left of this combined symbol is less
than or equal to the data on the right.

* (>=) Checks to see if data on the left of this combined symbol is
greater than or equal to the data on the right.

What is a comparison operator?

Comparison operators are also commonly referred to as relational operators.
These operators allow the comparison of data in a programming language
such as 4" Dimension. The basic 4™ Dimension operator symbols (<,=,>, #)
are used in conjunction with operands or values. Together, the comparison
operators and operands create an expression known as a conditional
statement or conditional expression in computer science.

Conditional Statement

A 4™ Dimension conditional statement normally has at least two operands
and one or more operators. These statements are vital to any programming
language due to the fact that these statements determine the flow of a
program. Moreover, they provide a result that helps in determining what
code will be executed.

Operands

& &
(2<=10)

Conditional Statement

Fig. 2

Operators

As the name implies, comparison operators compare values. In the example
above, the two operands (2 and 10) are compared. Reading it from left to
right:

2 is less than or equal to 10

The conditional statement will either return the value TRUE or FALSE. In this
particular case, the statement will return the value TRUE. Let's examine why:

2<10 is TRUE.
2=10 is FALSE

Here we split the statement into two individual statements. So how does
TRUE and FALSE make the statement TRUE? Before we get to that answer,
we need to know what data type is returned by the conditional statement.

Boolean Type

The TRUE or FALSE value returned is known as data of type Boolean or
Boolean type. The Boolean type is 1 bit and because the bit is naturally
binary, it can either be 1 representing TRUE or 0 representing FALSE. Thus
we have the following:

2 is less than or equal to 10

2<10 or 2=10

!

TRUE or FALSE

I

1or0
Fig. 3

The last statement 1 or 0 can be converted to the Boolean expression:
1+0

NOTE: Do not confuse this with 1 plus 0.
At this point, we can then apply Theorem 7 from the Laws of Boolean
Algebra:

(a) O+A=A

(For a full list of the theorems and axioms you can go to:
http://www.laynetworks.com/Boolean%?20Algebra.htm)

The result is 14+0=1 and therefore the result of the conditional statement is
TRUE.

What happens to the Boolean type result?

The conditional statements are normally used with a control flow structure.
After the conditional statement is evaluated, the control flow structure uses
the result and determines what piece of code gets executed next. 4™

Dimension uses the following control flow structures with conditional
statements:

* Branching

* Looping

The branching structure consists of “if else” and “case” statements. Whereas
the Looping structure consists of “while”, “for”, and “repeat” loops. For more
information regarding 4™ Dimension’s control flow structures you can go to:
http://www.4d.com/docs/CMU/CMU10087.HTM

Here is simple diagram of a branching structure.

Operand Operand
Operator

Conditional Statement

TRUE (1) FALS‘E (0
~~ ~
code 1 code 2
Fig.4

Now that we have some background information, let’s take a look at the
different data types used with Comparison Operators.

STRING COMPARISONS

Operation Syntax Returns Expression Value

Equality String=String Boolean | "abc" = "abc" | TRUE

"abc" = "abd" FALSE

Inequality String#String Boolean | "abc" # "abd" | TRUE

"abc" # "abc" FALSE

Greater than String>String | Boolean | "abd" > "abc" | TRUE

"abc" > "abc" FALSE

Less than String<String Boolean "abc" < "abd" TRUE

"abc" < "abc" FALSE

Greater than or equal | String>=String | Boolean | "abd" >="abc" TRUE
to

"abC" >=||abd" FALSE

Less than or equal to String<=String Boolean | "abc" <="abd" TRUE

"abd" <="abc" | FALSE

Fig. 5

For string comparisons, humber characters are less than letter characters.
For example:
* (M1"”"<"A") This statement evaluates to TRUE. In addition, the letter
“"A” is less than “Z". (“A"”<"Z'") This statement also evaluates to
TRUE.

When dealing with longer strings, the comparison is done on a character by
character basis. For example:
("ADG"”>"ACB") This statement evaluates to TRUE. Here is why:

The character “"A” from ADG is compared with the “A” from ACB. Because
they are identical, the next characters are compared.

The character "D” from ADG is then compared with the “"C” from ACB. The
character "D” is in fact larger than “C” thus the statement ("ADG">"ACB"")
is TRUE.

Diacritical, Upper, and Lower Case Characters

Using the comparison operators with strings can be a little tricky. This is
mainly because a letter can be displayed as an upper case or lower case
character.
(\\AII=IIaII)
TRUE

At first glance, this conditional statement looks as if it should be evaluated to
FALSE. A lower case “a” is not equivalent to an upper case “A”. But in reality,
if you place this conditional statement in your 4D method, you will be
surprised to see that this statement will actually be evaluated to TRUE. This
is because 4D does not look at the case when dealing with characters. The
same idea can be said about diacritical characters. The following conditional
statements will evaluate to TRUE as well.

("n" = "N")
TRUE
("A"="3a")
TRUE
In order to distinguish characters with cases and accents, one must apply the
use of the ASCII table.

ASCII (ASCII (American Standard Code for Information Interchange), generally
pronounced (in IPA), is a character set and a character encoding based on the
Roman alphabet as used in modern English and other Western European languages
(see English alphabet). It is most commonly used by computers and other
communication equipment to represent text and by control devices that work with
text.)

(From: en.wikipedia.org/wiki/ASCII)

4™ Dimension contains a native command that will return the ASCII value of
a given character. The command is Ascii.

Ascii (character)->Number

Parameter Type Description
character String Character to return as an ASCII code
Function result Number ASCII code for the character

Detailed information for the command can be found at:
http://www.4d.com/docs/CMU/CMUOQ0091.HTM

Therefore, in order distinguish upper case, lower case, and diacritical
characters you can use the following conditional statements with the Ascii
command:

(Ascii("n") = Ascii("N"))
FALSE
110 is not equal to 132

(Ascii("A")=Ascii("a"))
FALSE
65 is not equal to 140

(Ascii(“A")=Ascii("a"))
FALSE
65 is not equal to 97

Wild Card Character

The String comparison operator also supports the use of the wild card
character (@). This wild card character can be used to match any number of
characters.

Please note, the wildcard character must be used within the second operand
(the string on the right side) in order to match any number of characters.

For instance,(M“abcd”="ABC@") This statement is TRUE.
Now if the same statement is switched around:

("ABC@"="abcd"”) The result of the conditional statement changes to
FALSE.

NUMERIC COMPARISONS

Operation Syntax Returns Expression Value

Equality Number = Boolean 10 = 10 TRUE
Number

10 =11 FALSE

Inequality Number # Boolean 10 #11 TRUE
Number

10 # 10 FALSE

Greater than Number > Boolean 11 > 10 TRUE
Number

10 > 11 FALSE

Less than Number < Boolean 10 < 11 TRUE
Number

11 <10 FALSE

Greater than or equal to Number >= Boolean 11 >=10 TRUE
Number

10 >=11 FALSE

Less than or equal to NuNmber <= Boolean 10 <= 11 TRUE
umber

11 <=10 FALSE
Fig. 6

Unlike the String comparisons, numeric comparisons are not as involved.
Basically, we all have the basic understanding of humbers. We understand
that a basket containing 4 apples is less than a basket containing 5 apples.
Thus, (4<5) is a TRUE statement. On the other hand, when dealing with real
numbers, some help will be needed to compare the numbers correctly.

For instance:

E:=32.000001
F:=32.000002

If(E=F)

ALERT(“IT IS TRUE")
Else

ALERT(“IT IS FALSE”)
End If

The conditional statement above will evaluate to TRUE and thus the code will
execute and prompt “IT IS TRUE"”. Apparently, we can see that this
statement is not true. When dealing with real humbers you will need to be
specific as to how many decimal places you want 4" Dimension to account
for. If not, you leave the decision up to 4D and thus you might not receive
the expected outcome. In order to specify how many decimal places, one will
need to use the Round command.

Round (round; places)->Number

Parameter Type Description

round Number Number to be rounded

places Number Number of decimal places used for rounding
Function result Number Number rounded to the nhumber of

decimal places specified by Places

More information for this command can be found at:
http://www.4d.com/docs/CMU/CMUQ0094.HTM

Using the Round command to account for the 6 decimal places results in the
conditional statement evaluating to FALSE.

E:=32.000001
F:=32.000002

If(Round(E;6)=Round(F;6))
ALERT("IT IS TRUE”)
Else
ALERT("IT IS FALSE”)
End If

DATE COMPARISONS

Operation Syntax Returns Expression Value
Equality Date = Date Boolean 11/1/97' =11/1/97! TRUE
11/20/97! =11/1/97! FALSE
Inequality Date # Date Boolean 11/20/97! # 11/1/97! TRUE
11/1/97" # 11/1/97! FALSE
Greater than Date > Date Boolean 11/20/97! > 11/1/97! TRUE
11/1/97! > 11/1/97! FALSE
Less than Date < Date Boolean 11/1/97! < 11/20/97! TRUE
11/1/97' < 11/1/97! FALSE
Greater than or equal to Date >= Date Boolean 11/20/97! >=11/1/971 TRUE
11/1/97'>=11/20/97! FALSE
Less than or equal to Date <= Date Boolean 11/1/97'<=11/20/97! TRUE
11/20/971<=11/1/97! FALSE

Fig. 7

4™ Dimension also supports the use of comparison operators with the Date
data type. For dates, less than or greater than is based on the order. For
example, January is the first month of the year, thus it is less than December
which is the twelfth month of the year.

Below is some information regarding the Date data type.

* The range of dates is from 1/1/100 to 12/31/32,767.

« For the U.S. English version of 4" Dimension, it is ordered
month/day/year.

» If a year is given as two digits, it is assumed to be in the 1900’s if the
value is greater than or equal to 30, and the 2000’s if the value is less
than 30

When working with dates, please always be aware what format you are
using. For instance:

(11/11/2006!<111/1/2006!)

In the U.S. English Version of 4™ Dimension, this conditional statement will
evaluate to TRUE because it is read as Jan. 11, 2006 is less than Nov. 1,
2006. Now, what if you received the data from an external database that
used the date format dd/mm/yyyy instead of mm/dd/yyyy? If the data is
incorporated into 4" Dimension without making any changes, one would
expect the above conditional statement to logically be FALSE because it is
based on the format dd/mm/yyyy. The conditional statement would be read
logically as Nov. 11, 2006 is less than Jan. 1, 2006. Therefore, to prevent
this logical mistake, adjust external data accordingly to the format practiced
by your database.

TIME COMPARISONS

Operation Syntax Returns Expression Value
Equality Time = Time Boolean ?701:02:03? = ?01:02:037 TRUE
?01:02:03? = ?01:02:047 FALSE

Inequality Time # Time Boolean ?01:02:03? # ?01:02:04? TRUE
?01:02:03? # 201:02:037 FALSE

Greater than Time > Time Boolean ?01:02:04? > ?01:02:037 TRUE
?01:02:03? > ?01:02:037 FALSE

Less than Time < Time Boolean ?01:02:03? < ?01:02:04> TRUE
?01:02:03? < ?01:02:037 FALSE

Greater than or equal to Time >= Time Boolean ?01:02:03? >=701:02:03? TRUE
?01:02:03? >=701:02:04? FALSE

Less than or equal to Time <= Time Boolean ?01:02:03? <=701:02:03? TRUE
?01:02:04? <=701:02:03? FALSE

Fig. 8
As with Date comparisons, Time comparisons are also straight forward as
well. For instance, (?01:02:02? <?01:02:037?) evaluates to TRUE because
(?01:02:027?) is one second less than (?01:02:037).

The Time data type has the following criteria:

* Time has the range of 00:00:00 to 596,000:00:00

* Using the U.S. English version of 4D, time is ordered
hour:minute:second

e Times are in 24 hour format

A time can be treated as a number. The number returned from a time
is the number of seconds that time represents

Because time can be treated as a number of seconds you can have the
following conditional statement:

If(?701:03:057=3785)
ALERT(“IT IS TRUE”)
Else

ALERT(“IT IS FALSE”)
End if

This statement will evaluate to TRUE. Viewing just the literals, it is difficult to
justify this result. Mainly, it looks as if the data types do not even match.
Here is why 4D evaluates the statement as TRUE and why the operands are
equal.

First, 701:03:05? needs to be converted to seconds. Currently we have:

1 Hour 3 Minutes and 5 Seconds.

Convert 1 Hour to Seconds.

1 Hofir X Bﬂeﬁm X ‘514% =3600 Sec

Convert 3 Minutes to Seconds.

60 Sec _

IMinX “pp = 180 Sec

Add all to get total seconds.
1 Hour 3 Minutes and 5 Seconds -> 3600 Sec + 180 Sec+ 5 Sec =3785

Therefore, the conditional statement (?01:03:05?=3785) is equal and the
same as (3785=3785). As a result, the statement is TRUE.

POINTER COMPARISONS

Operation Syntax Returns Expression Value
Equality Pointer = Pointer Boolean vPtrA = vPtrB TRUE
VPtrA = vPtrC FALSE
Inequality Pointer # Pointer Boolean VPtrA # vPtrC TRUE
VPtrA # vPtrB FALSE

Fig. 9

As one can see, the main difference with the pointer types compared to other
data types is the lack of the greater than and less than operators. If you try
to use the less than and greater than operators with pointers, 4™ Dimension
will prompt the following error:

“The operation is not compatible with the two arguments”

In a high level language such as 4™ Dimension there is no need to try and
evaluate if a pointer is larger or smaller than another pointer. There values
do not have any significant weight. Therefore, the only time you would most
likely compare pointers is to check if they are the same value.

What is Pointer=Pointer or Pointer#Pointer?
Here is a visual representation.

1
P1 z
3
4
P2 —— 5]
B
Fig. 10

The above picture represents the conditional statement (P1#P2). This
conditional statement evaluates to TRUE because the value of P1 is not equal
to that of P2, in other words they are not pointing the same address.

P1

P2

Ll

Fig. 11

In this second picture, (P1=P2) is a TRUE statement because both pointers
are now pointing to the same address.

Having the capability to check for equality or inequality with pointers allows
to code generically in 4™ Dimension.

Summary

Comparison operators are a necessity in any programming language. When
placed in a conditional statement along with operands, the Boolean result it
helps produce is used in a control flow structure. This control flow structure
determines what code is executed next based on the Boolean result. Thus,
the importance of these operators should not be overlooked as they help in
the decision making of code execution. 4" Dimension has given its
developers the ability to use these operators with string, numeric, date, time,
and pointer data types. As a result, writing code in 4™ Dimension becomes
flexible and generic.

