Analyzing the Request Log file
By Jean-Yves Fock-Hoon
Technical Note 06-04

Overview

4D Server has the ability to generate a log of requests made to the server
(called the “request log file”). The purpose of this Technical Note is to
demonstrate how the analysis of this file can be used to improve the
performance of your database.

Introduction

As noted in Technical Note 06-03, “Recording Information sent Between 4D
Client and 4D Server”, the network is often the limiting factor of performance
in a Client/Server environment. If the latency is high, client performance will
be slower and can also be subject to more timeouts. If the latency is very
low, such as on a LAN, the client performance can also be affected if too
many of them are communicating with the server at the same time.

Obviously, the more requests the client makes, the more potential the server
has to slowdown since it will need to answer to all of them. Additionally, if
too many requests are sent and the latency is very bad, client performance
may also be considerably decreased.

Note: Technical Note 06-03 showed how to open and display the request log
file in @ more understandable language. This Technical Note uses the same
technique to view the request log file so it may be useful to review the
previous Technical Note. This Technical Note uses a modified copy of the
example database that was included in Technical Note 06-03.

Example 1: Browsing records

There are several techniques often used to browse the current selection in
4D. People from the “old school” might use the End Of File (EOF) technique,
e.g.:

While (Not(End selection([Datal)))
NEXT RECORD([Data])
End while

Here a While loop us used with a call NEXT RECORD nested in the loop to
traverse the selection.

Others prefer to use a For loop with a NEXT RECORD, e.g.:

$nbRecs:=Records in selection([Data])
For ($i;1;$NbRecs)

NEXT RECORD([Datal)
End for

Still others prefer a For loop with a GOTO RECORD or GOTO SELECTED
RECORD instead of NEXT RECORD:

$NbRec:=Records in selection([Data])
For ($i;1;$NbRec)

GOTO SELECTED RECORD([Datal;$i)
End for

The request log file can be used to compare these three techniques.
Take a look at the first example, the EOF technique.

ALL RECORDS([Datal)

While (Not(End selection([Data])))
NEXT RECORD([Data))

End while

The log file data below is based on a selection of 3 records.

Order Request Name Bytes In Bytes Out Duration
1 Sel_AllRecords 2 10 0
2 Struct_GetNbTablesAndFields 2 26 0
3 Sel_CacheSelection 10 18 0
4 Rec_load 6 96076 0
5 Rec_Unload 6 6 0
6 Rec_load 6 96074 0
7 Rec_Unload 6 6 0
8 Rec_load 6 96076 0
9 Rec_Unload 6 6 0

This code generates 9 requests. The first 3 requests are generated by the call
to ALL RECORDS. Each call to NEXT RECORD performs a Load and an Unload.

The next example demonstrates the use of NEXT RECORD inside a For loop.

ALL RECORDS([Datal)
$nbRecs:=Records in selection([Data])
For ($i;1;$NbRecs)

NEXT RECORD([Datal)
End for

Here is the request log data:

Order Request Name Bytes In Bytes Out Duration
1 Sel_AllRecords 2 10 0
2 Struct_GetNbTablesAndFields 2 26 0
3 Sel_CacheSelection 10 18 0
4 Rec_load 6 96076 0
5 Rec_Unload 6 6 0
6 Rec_load 6 96074 0
7 Rec_Unload 6 6 0
8 Rec_load 6 96076 0
9 Rec_Unload 6 6 0

Notice there is no difference when compared to the EOF technique. This code
generates 9 requests. The first 3 requests are generated by the call to ALL
RECORDS. Each call to NEXT RECORD performs a Load and an Unload.

The third example uses the GOTO SELECTED RECORD command within a For
loop.

ALL RECORDS([Datal)
$NbRec:=Records in selection([Data])
For ($i;1;$NbRec)

GOTO SELECTED RECORD([Datal;$i)
End for

Here is the request log data:

Order Request Name Bytes In Bytes Out Duration
1 Sel_AllRecords 2 10 0
2 Struct_GetNbTablesAndFields 2 26 0
3 Sel_CacheSelection 10 18 0
4 Rec_Unload 6 6 0
5 Rec_load 6 96076 3
6 Rec_Unload 6 6 0
7 Rec_load 6 96076 3
8 Rec_Unload 6 6 0
9 Rec_load 6 96074 1
10 Rec_Unload 6 6 0
11 Rec_load 6 96076 3

Notice there are 2 more requests. This is because the call to ALL RECORDS
will always load the first record. Then, in the loop, GOTO SELECTED RECORD
is called on record 1, so the first record is reloaded.

The For loop is generally the most efficient loop since a selection can be
empty or can contain only one record. A While or Repeat loop could be used
but that would require more tests.

The last example uses a For loop with GOTO RECORD. When using GOTO
RECORD a record number is needed. The record numbers of the selection are
retrieved from a call to the SELECTION TO ARRAY command.

ALL RECORDS([Data])
SELECTION TO ARRAY ([Data];$alrecnum)
For ($i;1;Size of array($alrecnum))

GOTO RECORD([Data];$alrecnum{$i})
End for

Here is the request log data:

Order Request Name Bytes In Bytes Out Duration
1 Sel_AllRecords 2 10 0

2 Struct_GetNbTablesAndFields 2 26 0

3 Sel_CacheSelection 10 18 0

4 Rec_load 6 96076 3

5 Sel_SelectionToArray 20 31 0

6 Struct_GetNbTablesAndFields 2 54 0

7 Rec_Unload 6 6 0

8 Struct_GetNbTablesAndFields 2 26 0

9 Rec_load 6 96076 3

10 Sel_ReduceToCurrentRec 10 6 0
11 Rec_Unload 6 6 0

12 Struct_GetNbTablesAndFields 2 26 0

13 Rec_load 6 96074 3

14 Sel_ReduceToCurrentRec 10 6 0
15 Rec_Unload 6 6 0

16 Struct_GetNbTablesAndFields 2 26 0

17 Rec_load 6 96076 0

18 Sel_ReduceToCurrentRec 10 6 0

In this case the number of requests has doubled. The first 3 requests are
generated by the call to ALL RECORDS. The next 3 requests are generated by
the call to SELECTION TO ARRAY. Each call to GOTO RECORD generates 4
requests: unload the current record; retrieve the structure; load the record;
and define the current record.

Note that the GOTO RECORD command is a very fast way to access a record,
faster than searching for the record, since the address is known. However in
a Client/Server environment, it can become disastrous as it requires more
requests, which could cause the whole system to slowdown, especially if the
network is very active.

There is no real difference between a While and a For loop when using NEXT
RECORD. The use of GOTO SELECTED RECORD can be considered
acceptable. However the use of GOTO RECORD presents some serious
performance risks since more requests will be generated.

Example 2: Creating a selection of records

In this example three records will be created.

The first technique simply performs a loop and uses the CREATE RECORD and
SAVE RECORD commands.

C_TEXT($mb)
$mb:="A"*32000
For ($i;1;3)
CREATE RECORD([Data])
[Data]StringA:=String(Random)+"-"+String(Random)
[Data]LongIntA:=Random
[Data]RealA:=Random/10
[Data]fTextl:=$mb
[Data]fText2:=$mb
[Data]fText3:=$mb
SAVE RECORD([Data])
End for

Here is the request log data:

Order Request Name Bytes In Bytes Out Duration
1 Rec_Save 96074 10 0

2 Sel_ReduceToCurrentRec 10 6 0
3 Rec_Unload 6 6 0

4 Rec_Save 96074 10 0

5 Sel_ReduceToCurrentRec 10 6 0
6 Rec_Unload 6 6 0

7 Rec_Save 96074 10 0

8 Sel_ReduceToCurrentRec 10 6 0

Notice SAVE RECORD will reduce the selection to the current record.
Therefore, the current record will be unloaded in order to set the new created
record as current record. The Client has sent a total of 288,264 bytes to the
Server.

The next example creates the records using ARRAY TO SELECTION.

C_TEXT($mb)
$mb:="A"*32000
ARRAY TEXT($as;3)
ARRAY TEXT($at1;3)
ARRAY TEXT($at2;3)
ARRAY TEXT($at3;3)
ARRAY LONGINT($al;3)
ARRAY REAL ($ar;3)

For ($i;1;3)
$as{$i}:=String(Random)+"-"+String(Random)
$al{$i}:=Random

$ar{$i};:=Random/10
$at1{$i}:=$mb
$at2{$i}:=$mb
$at3{$i}:=$mb

End for

ARRAY TO

SELECTION($as;[Data]StringA;$al;[Data]LongIntA;$ar;[Data]RealA;$at1;[Data]fText1;$at
2;[Data]fText2;$at3;[Data]fText3)

Here is the request log data:

Order Request Name Bytes In Bytes Out Duration
1 Sel_ArrayToSelection 288201 6 2
2 Struct_GetNbTablesAndFields 2 26 0

Notice there are only two requests and the Client sent only 288,203 bytes. If
multiple records need to be created at the same time it is best to ARRAY TO
SELECTION. Of course, the use of arrays will require that both Client and
Server have enough memory for the storage.

Example 3: Modifying a selection records

When it comes to modifying records in a batch process, a few methods can
be used.

The first one is a simple loop on the selection with the use of SAVE RECORD
and NEXT RECORD. In this example 8 records will be modified:

ALL RECORDS([Datal))

While (Not(End selection([Datal)))
Data]LongIntA:=[Data]LongIntA+100-50-50
SAVE RECORD([Data])

NEXT RECORD([Data])

End while

Here is the request log data:

Order Request Name Bytes In Bytes Out Duration
1 Sel_AllRecords 2 10 0
2 Struct_GetNbTablesAndFields 2 26 0
3 Sel_CacheSelection 10 38 0
4 Rec_load 6 96076 2
5 Rec_Save 96074 10 0
6 Rec_Unload 6 6 0
7 Rec_load 6 96074 3
8 Rec_Save 96072 10 1
9 Rec_Unload 6 6 0
10 Rec_load 6 96076 3

11 Rec_Save 96074 10 0
12 Rec_Unload 6 6 0
13 Rec_load 6 96076 3
14 Rec_Save 96074 10 0
15 Rec_Unload 6 6 0
16 Rec_load 6 96076 3
17 Rec_Save 96074 10 0
18 Rec_Unload 6 6 0
19 Rec_load 6 96076 3
20 Rec_Save 96074 10 0
21 Rec_Unload 6 6 0
22 Rec_load 6 96076 3
23 Rec_Save 96074 10 0
24 Rec_Unload 6 6 0
25 Rec_load 6 96076 3
26 Rec_Save 96074 10 0
27 Rec_Unload 6 6 0

Again, the 3 first requests are generated by ALL RECORDS. Then, for each
record, there is a load, save and unload. Also, the record is transferred from
the Server to the Client, the Client modifies the record and then sends it back
to the Server. This generates 27 requests.

The next example uses APPLY TO SELECTION to modify the records:

ALL RECORDS([Datal))
APPLY TO SELECTION([Data];[Data]LongIntA:=[Data]LongIntA+100-50-50)

Here is the request log data:

Order Request Name Bytes In Bytes Out Duration
1 Sel_AllRecords 2 10 0
2 Struct_GetNbTablesAndFields 2 26 0
3 Sel_CacheSelection 10 38 0
4 Rec_load 6 96076 1
5 Struct_SendAvailableAutoLink2S 32 6 0
6 Rec_Unload 6 6 0
7 Rec_LoadAndSendData 40 96080 3
8 Rec_Save 96074 10 0
9 Rec_Unload 6 6 0
10 Rec_LoadAndSendData 40 96080 3
11 Rec_Save 96074 10 0
12 Rec_Unload 6 6 0
13 Rec_LoadAndSendData 40 96080 3
14 Rec_Save 96074 10 0
15 Rec_Unload 6 6 0
16 Rec_LoadAndSendData 40 96080 3
17 Rec_Save 96074 10 0
18 Rec_Unload 6 6 0
19 Rec_LoadAndSendData 40 96080 3
20 Rec_Save 96074 10 0
21 Rec_Unload 6 6 0

22 Rec_LoadAndSendData 40 96080 3
23 Rec_Save 96074 10 1
24 Rec_Unload 6 6 0
25 Rec_LoadAndSendData 40 96080 0
26 Rec_Save 96074 10 0
27 Rec_Unload 6 6 0
28 Rec_LoadAndSendData 40 96080 1
29 Rec_Save 96074 10 0
30 Set_Delete 81 6 0
31 Set_Send 98 6 0
32 Rec_Unload 6 6 0

With 8 records, we can generate 32 records. We can still see that the whole
record is sent from the Server to the Client. The number of requests is
almost the same. The difference is these 4 requests: a check on relations,
the LockedSet set that APPLY TO SELECTION always creates for locked
records and the unloading of the last record.

If you really like to use APPLY TO SELECTION, another way would be to create a
stored procedure that will perform the APPLY TO SELECTION.

$a:=Execute on server("M_ApplyFormula";1024*1024;"ApplyFormula")
DELAY PROCESS(Current process;0)

Repeat
IDLE
Until (Not(Test semaphore("Apply")))

Order Request Name Bytes In Bytes Out Duration
1 Proc_ExecuteOnServer | 76 10 130
2 Sem_Set 38 8 0

As we can see, only 2 calls will be performed. However, you also have to
design a way to retrieve the Lockset. A stored procedure may also use a lot
of CPU time. If the execution is faster on the server, other clients may be
slowed down because the increased activity of the server.

Our last method would be to use arrays. We saw that ARRAY TO SELECTION
will be faster than SAVE RECORD.

At some point, the data needs to be transferred to the Client. The advantage
of SELECTION TO ARRAY is that we are not obliged to send all fields. ARRAY
TO SELECTION will modify only the fields defined as parameter for an
existing record. If the record does not exist, a new record will be created.

ARRAY LONGINT($al;0)

ALL RECORDS([Data])

SELECTION TO ARRAY([Data]LongIntA;$al)

For ($i;1;Size of array($al))
$al{$i}:=$al{$i}+100-50-50

End for
ARRAY TO SELECTION(%al;[Data]LongIntA)

Order Request Name Bytes In Bytes Out Duration
1 Sel AllRecords 2 10 0
2 Struct GetNbTablesAndFields | 2 26 0
3 Sel CacheSelection 10 38 0
4 Rec load 6 96076 3
5 Sel SelectionToArray 20 33 0
6 Struct_ GetNbTablesAndFields | 2 54 0
7 Rec Unload 6 6 0
8 Sel ArrayToSelection 37 6 4
9 Struct GetNbTablesAndFields | 2 26 0

As we can see, ALL RECORDS will generate our selection and load the first
record. The SELECTION TO ARRAY will generate the only array that we need.
4D Client will modify that array and will send it back to the Server. We can
see that SELECTION TO ARRAY unloads the current record. We perform a
total of 9 calls and less data has been transferred. You will want to use this
technique in your code if it is compatible with the design of your database.

Example 4: Transactions

In our example, we are going to create some records using SELECTION TO
ARRAY inside a transaction. Our code would look as follows:

START TRANSACTION
C_TEXT($mb)
$mb:="A"*32000
ARRAY TEXT($as;3)
ARRAY TEXT($at1;3)
ARRAY TEXT($at2;3)
ARRAY TEXT($at3;3)
ARRAY LONGINT($al;3)
ARRAY REAL ($ar;3)

For ($i;1;3)
$as{$i}:=String(Random)+"-"+String(Random)
$al{$i};:=Random
$ar{$i};:=Random/10
$at1{$i}:=$mb
$at2{$i}:=$mb
$at3{$i}:=$mb

End for

ARRAY TO
SELECTION($as;[Data]StringA;$al;[Data]LongIntA;$ar;[Data]RealA;$atl;[Data]fTextl;$at2;[Data]
fText2;$at3;[Data]fText3)

VALIDATE TRANSACTION

Order Request Name Bytes In Bytes Out Duration
1 Trans_Start 2 6 0
2 Sel ArrayToSelection 288203 6 3
3 Trans_GetNbNewReclInside 2 10 0
4 Struct GetNbTablesAndFields | 2 26 0
5 Trans_Validate 20 26 1

As you can see, transactions will generate only 4 small requests. The use of
transactions should not penalize your connections, unless your code
generates one million of transactions per second...

Example 5: Sorting a selection

Our next example sort a selection of records. The number of records to be
sorted does not matter since we're interested in requests that could be sent
during the execution of the code.

ALL RECORDS([Datal))
ORDER BY([Data];[Data]LongIntA;[Data]RealA;[Data]StringA)

Order Request Name Bytes In Bytes Out Duration
1 Sel AllRecords 2 10 0

2 Struct GetNbTablesAndFields | 2 26 0

3 Sel CacheSelection 10 262 0

4 Rec load 6 50 0

5 Sort 292 6 12

6 Struct GetNbTablesAndFields | 2 26 0

7 Sel CacheSelection 10 262 0

8 Rec_Unload 6 6 0

9 Rec load 6 52 0

Our same 4 requests are generated for the ALL RECORDS while the ORDER
BY will generate 5 additional requests. The first request will be the sort. The
next 2 requests retrieve the new selection. The former record will be
unloaded while the new first record is loaded.

Example 6: Searching a selection

In this example, let’s perform a simple query as described below:

QUERY ([Data];[Data]StringA="1@";*)

QUERY/([Data]; | [Data]StringA="2@";*)
QUERY/([Data]; | [Data]StringA="3@";*)
QUERY/([Data]; | [Data]StringA="4@";*)
QUERY/([Data]; | [Data]StringA="5@";*)
QUERY/([Data]; | [Data]StringA="6@";*)

QUERY([Data]; | [Data]StringA="7@";*)
QUERY([Data]; | [Data]StringA="8@";*)
QUERY([Data]; | [Data]StringA="9@")

Order Request Name Bytes In Bytes Out Duration
1 Sem_Clear 38 6 0
2 Search 868 22 0
3 PRes Write 24 6 0
4 Sel CacheSelection | 10 262 0
5 PRes Write 24 6 0
6 Rec_Unload 6 6 0
7 PRes Write 24 6 0
8 Rec load 6 50 0
9 PRes Write 24 6 0

As we can see, 9 requests are generated with a total of 994 bytes in and 314
bytes out. Since version 6.5, there is a command that can be used to match
our example: QUERY WITH ARRAY. Let’s see what would be the results.

ARRAY TEXT($at;10)

$at{1}:="1@"

$at{2}:="2@"

$at{3}:="3@"

$at{4}.="4@"

$at{5}:="5@"

$at{6}.="6@"

$at{7}:="7@"

$at{8}.="8@"

$at{9}:="9@"

QUERY WITH ARRAY ([Data]StringA;$at)

Order Request Name Bytes In Bytes Out Duration
1 Search QueryWithArray 65 10 1
2 Struct GetNbTablesAndFields | 2 26 0
3 Sel CacheSelection 10 262 0
4 Rec load 6 50 0

This command will generate 4 requests only, with only 83 bytes in and 348
bytes out. If you need to perform such queries, QUERY WITH ARRAY
definitively offers a good alternative.

Example 7: Transferring variables in C/S mode

In this example, we are just going to retrieve some variables from 4D Server
by using GET PROCESS VARIABLE command. The 2 variables would be a
string array and a text array. Both inter-process arrays have been defined on

the Server and contain the same contains, i.e. the same string of 20
characters and have the same number of items.

ARRAY STRING(80;as;20)

GET PROCESS VARIABLE(-1;<>as;as)
ARRAY TEXT(at;0)

GET PROCESS VARIABLE(-1;<>at;at)

Order Request Name Bytes In Bytes Out Duration
1 Proc_GetProcessVar | 50 8347 0
2 Proc_GetProcessVar | 50 2265 0

As we can see, one request has been generated for each GET PROCESS
VARIABLE. However, the size of bytes received is not the same. This is just a
reminder that string arrays require more space than text arrays. This has
also an impact when they need to be transferred between 4D Client and 4D
Server. As you may know, you cannot pass arrays as parameters when
creating stored procedure for example. Your workaround would be to drop
the array into a BLOB and send the blob as parameter. In that case, the
BLOB that contains the string array is going to be bigger than the other one;
the transfer over the network will therefore be longer.

Example 8: Semaphores

This last example will look at one of the most common piece of code that
everybody is using when dealing with semaphores.

$a:=Execute on server("P_ldle";1024*1024;"Idle")
DELAY PROCESS(Current process;60)
While (Test semaphore("Wait "))
IDLE
End while

In our method, we perform a DELAY PROCESS in order to give time to 4D
Server to create the stored procedure and define the semaphore. This is
acceptable since the stored procedure will take more than 1 second. The
P_Idle method looks as follows:

$a:=Semaphore("Wait ")

For ($i;1;50000)
$ab:="a"*2000
$ab:="a"*2000
$ab:="a"*2000
$ab:="a"*2000
$ab:="a"*2000

End for

CLEAR SEMAPHORE("Wait ")

Order Request Name Bytes In Bytes Out Duration
1 Rec_LoadForModifyDisplaySelect | 60 838 0
2 Rec RecInTable 2 10 0
3 Proc_ExecuteOnServer 76 10 48
4 Rec_LoadForModifyDisplaySelect | 60 838 0
5 Rec RecInTable 2 10 0
6 Rec RecInTable 2 10 0
7 Rec RecInTable 2 10 0
8 Rec RecInTable 2 10 0
9 Rec RecInTable 2 10 0
10 Rec RecInTable 2 10 0
11 Rec RecInTable 2 10 0
12 Rec RecInTable 2 10 0
13 Sem_Set 38 8 0
14 Sem_Set 38 8 0
15 Sem_Set 38 8 0
16 Sem_Set 38 8 0
17 Sem_Set 38 8 0
18 Sem_Set 38 8 0
19097 Sem_Set 38 8 0
19098 Sem_Set 38 8 0
19099 Sem_Set 38 8 0
19100 Sem_Set 38 8 0
19101 Sem_Set 38 8 0
19102 Sem_Set 38 38 0

As we can see, more than 19000 Semaphore requests are sent to the Server.
The server has to respond to each of them. This may decrease your
performance CPU-wise or network-wise.

Let’s now have a look to another alternative. The code is the same except
that IDLE is replaced by DELAY PROCESS (0) .

$a:=Execute on server("P_ldle";1024*1024;"Idle")
DELAY PROCESS(Current process;60)
While (Test semaphore("wait"))

DELAY PROCESS(Current process;0)

End while

Order Request Name Bytes In Bytes Out Duration
1 Proc_ExecuteOnServer | 76 10 162
2 Sem_Set 38 8 0

3 Sem_Set 38 8 0

4 Sem_Set 38 8 0

5 Sem_Set 38 8 0

6 Sem_Set 38 8 0

7 Sem_Set 38 8 0

8 Sem_Set 38 8 0

9 Sem_Set 38 8 0
10 Sem_Set 38 8 0

12704 Sem_Set 38 8 0
12705 Sem_Set 38 8 0
12706 Sem_Set 38 8 0
12707 Sem_Set 38 8 0
12708 Sem_Set 38 8 0
12709 Sem_Set 38 38 0

As we can see, the number of request has dropped considerably. We went
from almost 19102 to 127009.

Here is the number of requests sent by 4D Client to 4D Server per second:

IDLE DELAY PROCESS

Time Request/second Time Request/second
11:25:32 784 11:27:43 2
11:25:33 2664 11:27:44 2041
11:25:34 2052 11:27:45 972
11:25:35 831 11:27:46 1902
11:25:36 866 11:27:47 998
11:25:37 2512 11:27:48 1360
11:25:38 1574 11:27:49 1164
11:25:39 2518 11:27:50 1164
11:25:40 1472 11:27:51 1320
11:25:41 2092 11:27:52 1131
11:25:42 1737 11:27:53 655

As we can see, the average of number of requests is higher when using IDLE
and the time taken to execute that stored procedure is the same, i.e. 10
seconds.

The IDLE command does not force an idle. It checks if an idle can be
performed. An idle is performed if the process used at least one tick. In our
first example, a check on the semaphore is performed, then, an idle request
is performed. Since our process did not use one tick, the process will keep
the hand and check the semaphore again, back and forth, until the process
uses one tick. With DELAY PROCESS, an idle is forced and the hand is given
to the next process on our 4D Client, then, back to our current process.
DELAY PROCESS (0) does not delay the process but just forces an idle, while
DELAY PROCESS (1) delays the process for 1 tick and automatically performs
an idle.

Summary

By executing a few commands, we know now what type of request has been
sent, how many and - sometimes - when 4D reloads or unloads the current
record. With this information, we can now have an idea on how to optimize

the communication between Client and Server. In other words, reducing the
communication between 4D Server and all 4D Clients may help 4D Server
save some CPU time. 4D Server can then use that extra CPU time to handle
more connections or simply doing its job faster. Of course, with less traffic, it
can also help alleviate the load on the network.

However, reducing the number of requests is not necessarily a guarantee of
speed. If, in all cases we saw, the speed gains are significant, keep in mind
that a client server system is complex and may not yield such results every
time.

