
Scanning Text and BLOBs Efficiently
Or Testing Performance Meaningfully

By David Adams

Technical Note 05-42

Overview
--

Many programming tasks require scanning the contents of a string, text block, or
BLOB character-by-character or byte-by-byte. For example, implementing case-
sensitive string comparisons, many custom parsers, and comparing pictures, BLOBs,
or documents may require sequentially scanning large blocks of data. The optimal
method for sequentially scanning text and BLOBs is a subject programmers can
debate passionately, given their various biases, experiences, goals and values. Such
debates remain exchanges of opinion unless real and repeatable test results can be
brought into the conversation. This technical note includes a sample database that
generates tests results for several different approaches to scanning text and blobs.
While finding optimal approaches to scanning is the purpose of the test system, it is
only one of the aims of this technical note. The other objective is to illustrate how test
results can be either helpful or dangerously misleading, depending on their design,
execution, and application. After reading this note, you should have:

• A clearer understanding of the trade-offs to be made between speed and memory
during text/BLOB scanning.

• A workable set of strategies for designing and using scanning code.

• An awareness of a very specific, and very dramatic, performance issue related to
scanning text through a pointer.

• A practical appreciation of some of the main points to consider when designing or
interpreting test results.

Apart from the sample testing database included in this note, also see Technical Notes
##-## Case-Sensitive Operations in 4th Dimension.

Scanning: Small Differences Accumulate
--

As an introduction to why it is important to occasionally look closely at the
performance characteristics of code, consider the test results summarized below for
operations scanning 32,000 characters of data:

Type of Data Comparison Speed
Text Scan original text directly. 2
Pointer to text Duplicate original text and scan copy directly. 2
Pointer to text Scan original text through a pointer. 710
BLOB Scan original BLOB directly. 1
Pointer to BLOB Duplicate original BLOB and scan copy directly. 1
Pointer to BLOB Scan original BLOB through a pointer. 4

Surprisingly, scanning a block of text through a pointer takes over 700 times longer
than scanning the same data directly in a BLOB. (Don't stop reading now as later we'll
see why these results don't tell the whole story.) This sort of finding can’t easily be
predicted or explained. Before looking at these and some other test results more
closely, we'll review the basic test setup and factors contributing to the speed
differences between the methods.

About the Test Database

The original test database used to generate the results discussed in this note is
included for your use. The best way to generate meaningful results is to run tests on
equipment typical of your environment. Additionally, you may find bugs or develop
additional tests to improve the value of the results in your systems.

About the Test Results

All of the results listed in this note are based on actual tests in a database running
under 4th Dimension 2004.2. Unless otherwise stated, the results don’t show clock
times. Instead, the results are normalized against the best result. Therefore, the
quickest result appears as 1 and all other results are a factor of the quickest result.
For example, in the results shown above, scanning a BLOB through a pointer is 4
times slower than scanning a BLOB directly. (Over a wide range of tests, the ratio is
more typically 1:1.67.) For actual times in milliseconds, run the test database on your
own system.

Note All results are based on a compiled database. Since operations on text and BLOBs
benefit dramatically from compilation, this note doesn’t consider interpreted behavior.
Compiling with range checking on or off makes little difference to the results

Review: Syntax for Scanning Text and BLOBs
--

Reading an individual character from a string or block of text is conceptually identical
to reading an individual byte from a BLOB. However, the syntax and numbering rules
for strings/text and BLOBs differ in 4th Dimension. For review, the table below
illustrates the main rules applied to a block of text and a BLOB, each with 32,000
bytes of data.

Syntax First Last Length
Text text[[1]]

text≤1≥ (Mac OS)

1 32,000 32,000

BLOB BLOB{0} 0 29,999 32,000

The main points in the table are restated below descriptively:

• Text is read from character 1 while BLOBs are read as offsets from byte 0.
Therefore, the first byte in a string is at position 1 and the first byte in a BLOB is at
position 0.

• The length of a string or block of text, read with Length, equals the actual number
of characters stored. The size of a string or block of text, read with Blob size,
equals the actual number of bytes stored. Therefore, the length of a block of data
stored as text equals the length stored as a BLOB. However, since BLOBs are
numbered from 0, the last byte in a BLOB is address at length-1.

• The syntax for reading characters from a string or block of text can be either
[[character_number]] or ≤character_number≥ on Mac OS and must be [[character_number]]
on Windows.

• The syntax for reading bytes from a BLOB is {byte_number}. The curly braces are
also used as the syntax for reading elements in an array. Conceptually, you can
think of BLOBs as an array of bytes.

Review: Passing Parameters by Value or Pointer
--

4th Dimension supports passing parameters by value or by pointer. The table below
illustrates the relevant syntax for a subroutine reading text or BLOB copied into a
parameter or passing indirectly as a pointer:

Type of Data Pass By Scan Example
Text Value Copy in parameter $1[[$character_index]]
Text pointer Pointer Original through pointer $1->[[$character_index]]
BLOB Value Copy in parameter $1{$byte_index}
BLOB pointer Pointer Original through pointer $1->{$byte_index}

Passing by value or by pointer each have their respective advantages and
disadvantages. When passing a parameter by value, 4th Dimension copies the original
value into the parameter. Therefore, the contents are duplicated and additional
memory is consumed. Below is an example of passing a BLOB by value:

ScanTest_BlobParameter (ScanTest_Sample_blob)

Within the ScanTest_BlobParameter subroutine, the $1 parameter contains a copy of the
contents of ScanTest_Sample_blob variable. If code clears the contents of the

ScanTest_Sample_blob, the contents of $1 within ScanTest_BlobParameter don’t change.
The advantage of passing parameters as values is that the subroutine can work
directly on the data, as in the code fragment below:

$1{$byte_index}

The disadvantage of passing parameters by value is that extra memory is consumed.
If a 2MB BLOB is passed as a parameter, at least 4MB of memory are consumed, 2MB
for the original and 2MB for the copy. If memory is a concern, the alternative is to
pass a pointer to the original data. When passing by pointer, the original data is not
copied. Below is an example of passing a BLOB by pointer:

ScanTest_BlobPointer (->ScanTest_Sample_blob)

Within the ScanTest_BlobPointer subroutine, the $1 parameter contains a pointer to the
ScanTest_Sample_blob variable. If the routine clears the contents of the
ScanTest_Sample_blob, the original contents $1 points to no longer exists. The
advantage of passing pointers is that the system spends less memory. The
disadvantage is that reading the contents of the original value requires eliminating
one level of indirection by dereferencing a pointer, as in the code fragment below:

$1->{$byte_index}

There is a cost to dereferencing a pointer, which, per operation, is quite small but it
can add up to something measurable when iterated tens of thousands or millions of
times.

Note Internally, 4th Dimension pointers are unlike pointers in languages like C and
considerably more expensive to dereference.

Results Revisited
--

Keeping in mind the points about memory and performance just made, let's consider
some test results. The tests were conducted by scanning text and BLOB variables with
32,000 characters. Each test was performed over 50 times and then averaged. The
range of minimum and maximum values for any particular operation was slight. All
tests were performed in a compiled database. Remember that the times are factors of
the quickest result, not absolute clock measurements. The results or ordered from
fastest to slowest:

Type of Data Comparison Speed
Pointer to BLOB Duplicate original BLOB and scan copy directly. 1
Pointer to text Duplicate original text and scan copy directly. 2
Pointer to BLOB Scan original BLOB through a pointer. 4
Pointer to text Scan original text through a pointer. 710

A few obvious implications and conclusions can be drawn from the results shown
above:

• Operations on pointers are expensive. A pointer makes the scanning operation 355
times slower than a direct read for text and 4 times slower for BLOBs. Therefore,
you shouldn’t use pointers.

• Operations on text are expensive. A direct text scan is twice as slow as a direct
BLOB scan and a pointer-based text scan is nearly 180 times slower than a pointer-
based BLOB scan. Therefore, you should use BLOBs instead of text.

The conclusions just offered are based on reproducible test results and sound logic.
They're also sometimes bad advice. While the results shown are correct, they are also
incomplete. So, we'll look at some more results and then consider how to apply test
results.

Tests Results Are Easy to Overapply
--

Benchmarks and test results are very compelling pieces of information in a discussion.
Unfortunately, it is all to easy to make any or all of the following errors through the
incomplete or erroneous testing, or the misapplication of valid results:

• Relying on inaccurate or meaningless results.

• Believing results show a causal relationship that doesn’t exist, thereby reinforcing
prior prejudices.

• Overgeneralizing conclusions, such as applying valid results from unusual boundary
cases that may not hold true for more typical situations.

• Overlooking incomplete test results, or only true of unusual cases.

Despite these hazards, testing is an extremely worthwhile practice. Ideally, tests and
test results should be reviewed by more than one person. It is impossible for a single
programmer to see the biases and prejudices one brings to test design and
interpretation.

This note includes the original test database to give you a chance to confirm or
challenge both the results and methodologies presented here. If you find problems or
gain new insights, please write me at dpadams@island-data.com

Now, with all of those warnings about testing in mind, let's look at test results starting
from different initial conditions.

How Slow Is It to Read Text Through a Pointer?
--

The results below are based on identical tests to those already listed but with sample
text/BLOBs of 1,000 characters instead of 32,000 characters. (The values are shown
to two decimal places as the range of values is much smaller than in the previous
case.) Again, the results are normalized to the quickest operation and ordered from
fastest to slowest.

Type of Data Comparison Speed
Pointer to BLOB Duplicate original BLOB and scan copy directly. 1.00
Pointer to BLOB Scan original BLOB through a pointer. 1.45
Pointer to text Duplicate original text and scan copy directly. 5.69
Pointer to text Scan original text through a pointer. 7.25

Since these results are all adjusted to show the relative performance of each
technique within a test setting, the ratios should remain nearly the same across tests.
As the two result tables show, such is not the case. The most dramatic difference
shown above is that on a 1,000 character test, using a text pointer is roughly 7 times
slower, while with a 32,000 character test, using a text pointer is roughly 700 times
slower. Any time you get unexpected results that differ by two orders of magnitude,
you should be highly suspicious of the tests. If the tests are sound, you may need to
design additional tests to figure out what is really happening. In this case, you would
expect the time taken to scan 32,000 characters by any technique to be roughly 32
times longer than the time for scanning 1,000 characters. The existing test code suits
itself to testing this assumption. The chart below summarizes the results of a series of
tests that start with 1,000 characters, 2,000 characters, and so on. As the chart below
shows, the rate follows the idealized curve represented by KB. As the number of
characters increases, the time required to do a complete sequential scan increases
proportionally, exactly as we should expect.

Scanning Rates

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

KB

M
il

li
se

co
n

d
s

String Parameter BLOB Parameter BLOB Pointer KB

The chart shown above leaves out reading text through a pointer as the results are so
skewed that the chart becomes unreadable. Below is a chart showing the curve for
scanning text through a pointer:

Scanning Rates

0

1000

2000

3000

4000

5000

6000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

KB

M
il

li
se

co
n

d
s

String Pointer

In this test setting, the rate progresses evenly until around 14,000-15,000 characters
when it suddenly defines a nearly perpendicular slope. The performance of scanning
text through a pointer differs radically, depending on the number of characters in the
text value.

Note Note that on different equipment or using a different version of 4th Dimension, the
position of the sudden change in scanning rate is likely to move or even disappear.

The Danger of Incomplete Testing
--

The two sets of benchmarks shown so far illustrate the dangers of incomplete testing.
Two developers using identical test code could reach very different conclusions about
the cost of using pointers, depending on the size of their test strings. A developer
using a 10,000 character string could legitimately claim that pointers aren't too
expensive while a developer using a 20,000 character string would find pointers
hundreds of times more expensive. This example shows how incomplete testing can
lead to mistakes. When designing tests, try values from a wide range. Make this an
automatic part of your test design because it is essentially impossible to notice that a
result is "missing" from a test design. Rows and columns of numbers look reassuringly
complete but can very easily be telling a misleading story.

Why Does the Text Scanning Rate Vary?
--

An obvious question is why does the performance of text scanned through a pointer
fall off a cliff? The only way to answer to this question is to inspect the internals of 4th
Dimension itself. We can't determine a reason conclusively through external testing.

While it is easy enough to come up with theories about why this behavior exists (or
even why it can't possibly exist), at the end of the day, the theories don't matter.
What matters is reproducible behavior and how you manage unusual performance
characteristics.

Numbers Are Meaningless without Context
--

It’s all too easy to look at test results and immediately jump to hard-and-fast
conclusions. More often, the best approach depends on the larger context. Consider
again the conclusions the initial test results lead to:

• You should not use pointers.

• You should use BLOB instead of text.

Despite what the original numbers say, there are any number of reasons to reject
these conclusions as absolutes:

• Pointers avoid duplicating values, thus saving memory. In the case of large BLOBs,
this can be an important consideration. This benefit is worth spending some time
for. How much it is worth paying depends on the operating environment and
customer requirements for the overall system. We'll look at this subject again in a
moment.

• Pointers are one of the best ways to make code more reusable in 4th Dimension
thus reducing code redundancy and inconsistencies. Avoiding duplicate work and
lowering maintenance costs is a substantial benefit.

• Operations on BLOBs may be faster than operations on text, but many developers
find BLOBs a pain to work with. Many of 4th Dimension's commands, such as
Position, don’t work on BLOBs. Perhaps it’s worth paying a speed penalty to get
the convenience of working with native commands and easy-to-read textual data.

As the previous points illustrate, choosing between alternatives in programming is
rarely simple and clear-cut. The best approach is almost never free. Figuring out how
to balance the pros and cons of various approaches is a judgment call. Ideally, the
decisions are based on real user requirements, such as specific performance
benchmarks or memory-use restrictions.

How Fast Is Fast?
--

Given that, under typical conditions, pointers are slightly slower than direct access,
let's look a bit more at what "fast" and "slow" mean. The tables of test results used in
this note show comparative times, not the milliseconds generated by the test code.
This approach highlights the relative performance of each technique, but be careful
not to consider speed factors in isolation. If a solution is "1,000 times faster" but the
original takes only 1 millisecond and doesn't run in a loop, it is completely
meaningless that an alternative is 1,000 times faster. You can never save more
time than the original operation requires. If a task takes 1 second you can save,

at most, 1 second. In the case of examining test and BLOBs, consider a finding from
the first table: scanning a BLOB through a pointer takes four times longer than
scanning a BLOB copied directly into a parameter. "Four times longer" sounds
dramatic and compelling. (As noted above, testing with various BLOB sizes shows a
more typical ratio of 1:1.67.) However, measured against the clock, the difference
amounts to less than a 2 second difference when scanning a 1MB BLOB on modest
contemporary hardware. Is it worth spending 1MB of memory to buy less than a
second? It may or may not be, depending on what else the application needs to do
and if users are present. For an unattended process, 2 seconds is meaningless while
for a user waiting for a screen to redraw it is a very long time indeed. Be sure to
calibrate test results with real needs.

Available Memory and Operations on BLOBs
--

The test results consistently show that working through a pointer is slightly to
somewhat slower than working on a BLOB directly. Therefore, for best speed, it seems
obvious that values should be passed instead of pointers. In the case of BLOBs,
however, this idea deserves careful scrutiny. Since passing by value creates a
duplicate, any BLOB passed by value forces 4th Dimension to find enough contiguous
memory to hold the copy. In the case of a large BLOB, it can be expensive. While 4th
Dimension 2004 only runs on modern operating systems with decent virtual memory
schemes, moving memory is never entirely free. In fact, if memory is tight and
contents need to be shifted to create room for a BLOB, overall performance will go
down. Accordingly, it is possible that, under certain memory conditions, accessing a
BLOB through a pointer will be faster than reading the BLOB directly as a parameter.
You could construct a test system to confirm this behavior but, as a more immediate
consideration, 4th Dimension can fail on BLOB operations when enough memory is not
available.

Personal Recommendation
--

As a personal recommendation, I use the following as default rules for scanning
operations, in the absence of any specific guidance from user requirements:

• Pass text by value (directly) to avoid falling off the performance cliff illustrated in
the charts above.

• Pass BLOBs by pointer (indirectly) to avoid consuming extra RAM.

These rules-of-thumb are one programmer's starting point and are not absolute rules.
You can use different defaults, as you see fit and break the rules when a particular
situation obviously favors saving memory or saving speed.

Summary
--

This technical note examines the speed and memory differences between scanning
text and BLOBs passed by value or by pointer. A testing database is included that
generates speed comparisons used in this note to develop rules of thumb for
designing text and BLOB scanning code. The test system and test results are a point
of departure for looking at some of the hazards and principles of performance testing.

